Δημοσίευση με ελληνικές οπτικές παρατηρήσεις Δία

Σε μια πρόσφατη εργασία, όπου αναλύονται ραδιοφωνικές παρατηρήσεις για την μελέτη της ατμόσφαιρας του Δία κάτω από τα ορατά της στρώματα, γίνεται και χρήση παρατηρήσεων στο οπτικό μέρος του φάσματος με συμμετοχή δύο Ελλήνων παρατηρητών, του Μάνου Καρδάση (μέλος του ΣΕΑ) και του Γιάννη Ροζάκη.

Οι ερευνητές μελέτησαν την αμμωνία στα στρώματα της ατμόσφαιρας με πιέσεις από ~0.5 ως ~10 bar (δηλαδή μέχρι βάθος 100 km), και πως αυτή κατανέμεται σε ένα “τρισδιάστατο” χάρτη. Η αμμωνία οδηγείται από τα βάθη (που μπόρεσαν να παρατηρήσουν) μέχρι τα ανώτερα στρώματα, όπου τελικά το αέριο ψύχεται και δημιουργεί νέφη παγωμένης αμμωνίας. Το υπόλοιπο αέριο στη συνέχεια βυθίζεται πάλι προς τα κάτω, σε περιοχές που παρουσιάζουν έλλειψη αμμωνίας. Οι διάφορες λαμπρές/σκοτεινές περιοχές στα ραδιοφωνικά κύματα συσχετίζονται άμεσα με χαρακτηριστικά στο υπέρυθρο (πχ πηγές στα 5μm – “hot spots”) και στο οπτικό (πχ Μεγάλη Κόκκινη Κηλίδα, “άσπρα οβάλ”), συνδέοντας αυτά τα χαρακτηριστικά με τους μηχανισμούς γέννεσης τους βαθύτερα μέσα στην ατμόσφαιρα.

Η δημοσίευση είναι:
Imke de Pater, R. J. Sault, Bryan Butler, David DeBoer, Michael H. Wong
“Peering through Jupiter’s clouds with radio spectral imaging”
Science, 2016, 352, 1198

Σύνδεσμοι:
Science
Berkeley News
The Gurdian




Πλανήτης Δίας, μια σύνοψη της ονοματολογίας των σχηματισμών, και η μελέτη της δυναμικής της ατμόσφαιρας.

ΠΡΟΛΟΓΟΣ
Μεγαλύτερος από όλους τους άλλους πλανήτες και δορυφόρους μαζί, ο Δίας είναι ένας κολοσσός πλούσιος σε τηλεσκοπικές λεπτομέρειες και εναλλασσόμενους σχηματισμούς. Η ατμόσφαιρα του Δία χαρακτηρίζεται από εναλλασσόμενες Ταινίες (Belts) και συστροφές πολύχρωμων νεφών και ένα εκπληκτικό σύστημα καταιγίδων. Η ατμόσφαιρα του πλανήτη, με περίοδο περιστροφής περίπου 9,85 ωρών, είναι σε συνεχή κίνηση οδηγούμενη από την θερμότητα η οποία “δραπετεύει” από το θερμό
εσωτερικό του και από το Ηλιακό φως το οποίο απορροφάται από επάνω.

A) Η ΟΝΟΜΑΤΟΛΟΓΙΑ ΠΕΡΙΟΧΩΝ ΚΑΤΑ ΔΙΟΓΡΑΦΙΚΟ ΠΛΑΤΟΣ:

Εικόνα 1: Οι ζώνες και οι ταινίες της ανώτερης ατμόσφαιρας του Δία και η ονοματολογία τους.

Εκτεινόμενο παράλληλα προς τον Ισημερινό του πλανήτη υπάρχει ένα σύστημα λαμπρών Ζωνών και σκοτεινών Ταινιών στο οποίο αντιπροσωπεύονται περιοχές υψηλής πίεσης οι αποκαλούμενες Ζώνες (Zones) και οι Ταινίες περιοχές χαμηλής πίεσης.
Για να υπάρξει μια εύχρηστη και ταυτόχρονα ακριβής μέθοδος εντοπισμού και καταμερισμού αυτών των Ταινιών και Ζωνών η Βρετανική Αστρονομική Εταιρεία (Β. Α. Α.) καθιέρωσε μια ονοματολογία η οποία βασίστηκε κυρίως στην καταχώρησή τους κατά Διογραφικό πλάτος.
Σ’ αυτό το σύστημα οι Ταινίες (σκουρόχρωμες) και οι Ζώνες (ανοιχτόχρωμες λευκές, υπόλευκες) εναλλάσσονται από τον Ισημερινό προς τους Πόλους κατά την εξής σειρά:

Equatorial Zone – EZ – Ισημερινή Ζώνη
Equatorial Belt – EB – Ισημερινή Ταινία
Tropical Zone – Tr Z – Τροπική Ζώνη
Temperate Belt – TB – Εύκρατη Ταινία
Temperate Zone – TZ – Εύκρατη Ζώνη
Polar Regions – PR – Πολικές Περιοχές

Οι Ταινίες και οι Ζώνες προσδιορίζονται περαιτέρω από το ημισφαίριο στο οποίο εμφανίζονται. Για παράδειγμα η Μεγάλη Κόκκινη Κηλίδα (Μ.Κ.Κ.) (GREAT RED SPOT, G.R.S.), εδράζεται στην SΕΒ (Νότια Ισημερινή Ταινία ) σε μία εσοχή η οποία ονομάζεται Εσοχή της κόκκινης κηλίδας (R. S. H. – Red Spot hollow). Αντίστοιχα έχουμε την NEB ( Βόρεια Ισημερινή Ταινία). (βλέπε επίσης Εικόνα 1)

Υπάρχουν επίσης δευτερεύουσες, συνήθως δυσδιάκριτες Ζώνες και Λωρίδες (Bands) οι οποίες διαιρούν τις δύο τουλάχιστον μεγάλες Ταινίες (NEB,SEB) και την κύρια Ζώνη, την Ισημερινή Ζώνη (Ε.Ζ.) αντίστοιχα. Η λεπτή δυσδιάκριτη Λωρίδα η οποία εμφανίζεται να διατρέχει την ΕΖ ονομάζεται ΕΖΒ (Equatorial Zone Βand)(Ισημερινή Ζώνη Λωρίδα) και αντίστοιχα οι Ζώνες που διατρέχουν τις SEB, NEB καταγράφονται ως SEBΖ και ΝΕΒΖ. Η λεπτή Λωρίδα στην ΕΖ και οι δευτερεύουσες Ζώνες στις SEB, NEB τις χωρίζουν σε δύο στελέχη (components) το Βόρειο και το Νότιο. Τα στελέχη καταγράφονται ως : SEB (N), SEB (S) αντίστοιχα.

Οι Ταινίες και Ζώνες οι οποίες εμφανίζονται Νοτιότερα και αντίστοιχα Βορειότερα των STZ και NTZ oνομάζονται όπως φαίνεται στην Εικόνα 1, (South South Temperate Belt – SSTB και αντίστοιχα ΝΝΤΒ – North North Temperate Belt) ή αλλιώς S2TB & N2TB.
Υπενθυμίζεται επίσης πως η σειρά αυτή δεν αντιπροσωπεύει πάντοτε απόλυτα την τηλεσκοπική εικόνα του πλανήτη με αποτέλεσμα ενίοτε μετά την STrZ να μην έχουμε θέαση της αμέσως επόμενης STB αλλά των SSTB και SSTZ , καθώς λόγω του πολύπλοκου συστήματος ατμοσφαιρικών διαταραχών η ένταση των Ταινιών αλλά και των Ζωνών μεταβάλλεται.

* Ακόμα και ο παρατηρητής ο οποίος δεν διαθέτει καλό χειρισμό της Αγγλικής επιβάλλεται να γνωρίζει τις ονομασίες και τις συντμήσεις τους για την επαρκή καταγραφή τους στα υποδείγματα και την προσκόμισή τους σε διεθνείς οργανισμούς.

Επιπροσθέτως προς τον καθορισμό επιφανειακών περιοχών η ΒΑΑ υιοθέτησε δύο διαφορετικές περιόδους περιστροφής για τον Δία, διότι τα ορατά συστήματα νεφών δεν περιστρέφονται συγχρόνως σ’ όλον τον πλανήτη. Οι δύο διαφορετικοί ρυθμοί περιστροφής υπολογίζονται βάσει των SYSTEM I και SYSTEM II.

To SYSTEM I περιλαμβάνει την αστραπιαία περιστρεφόμενη Ισημερινή Ζώνη (ΕΖ), και έκταση Διογραφικού Πλάτους το οποίο ορίζεται από το Νότιο χείλος της (ΝΕΒΖ) (ΝΕΒZn) και το Βόρειο χείλος της (SEBZ) (SEBZn) Η μέση περίοδος περιστροφής αυτών των περιοχών είναι P=9h 50m 30,0035 sec.
Όλα τα άλλα Διογραφικά πλάτη στον πλανήτη εμπίπτουν στο SYSTEM II με μέση περίοδο περιστροφής P=9h 55m 40,6325 sec.

B ) Η ΟΝΟΜΑΤΟΛΟΓΙΑ ΤΩΝ ΚΥΡΙΟΤΕΡΩΝ ΣΧΗΜΑΤΙΣΜΩΝ:

Εικόνα 2: Ένα δείγμα από τους πιο εμφανείς σχηματισμούς οι οποίοι συναντώνται στην ατμόσφαιρα του Δία συμπεριλαμβανομένου και του εάν αυτοί οι σχηματισμοί είναι σκοτεινοί (dark) ή φωτεινοί – λευκοί, υπόλευκοι (bright, white).
Τα σχέδια έγιναν από τον Jose Olivarez.

Επειδή οι Ταινίες και οι Ζώνες κυρίως βρίθουν από βραχύβιους σκοτεινούς και λαμπρούς σχηματισμούς, η ήπια κανονικότητα των κύριων σχηματισμών η οποία εμφανίζεται σε διαγράμματα της ονοματολογίας τους δεν αποτελεί μία πλήρη αναπαράσταση της τηλεσκοπικής εικόνας του πλανήτη. Διάφοροι όροι έχουν χρησιμοποιηθεί για να περιγράψουν αυτά τα μικρά νέφη αλλά υπάρχουν συγκεκριμένοι τύποι οι οποίοι εμφανίζονται συνήθως. Μία χρήσιμη ονοματολογία αναπτύχθηκε από τους Phillip Budine και Elmer J. Reese της A.L.P.O. (Acossiation of Lunar & Planetary Observers) πριν από τριάντα οκτώ χρόνια.
Το σύστημα Budine – Reese κατηγοριοποιεί τους αμυδρότερους σχηματισμούς ως σκοτεινούς (D) ή λευκούς (W) και περιγράφει τους συγκεκριμένους τύπους ακολούθως:

  1. Projection (Προεκβολή – Προέκταση [D]):
    Μια σκοτεινή προεκβολή στο χείλος μιας Ταινίας. Μπορεί να είναι ή να μην είναι σκοτεινότερη από το κυρίως σώμα της. Συνήθως γίνεται ορατή στο Νότιο χείλος (South Edge) της ΝΕΒ (ΝΕΒS).
  2. Bar – rod (Ράβδος – [ D ] ):
    Μια πολύ επιμήκης σκοτεινή συμπύκνωση με τον μέγιστο άξονά της συνήθως παράλληλο προς τον Ισημερινό. Σε κάποιες περιπτώσεις μία Ράβδος μπορεί να είναι ένα απομονωμένο μικρό τμήμα μιάς κατά τα άλλα αόρατης Ταινίας. Συχνά γίνεται ορατή στο Βόρειο στέλεχος της Ν.Ε.Β. (North Comp. of NEΒ) [ΝΕΒ(Ν)].
    1. Festoon ( Προεκβολή – [D] ):
      Σκοτεινός νηματοειδής σχηματισμός ή λεπτή σκοτεινή προεκβολή η οποία διαπερνάει μια Ζώνη ή δημιουργεί έναν βρόγχο μέσα σε μία Ζώνη.
    2. Loop Festoon ( Προεκβολή -[D] ):
      Μια έντονα καμπυλωμένη προεκβολή η οποία ξεκινάει από μια Προέκταση (Προεκβολή-Projection) στο χείλος μιας Ταινίας και δημιουργεί έναν βρόγχο στην προσκείμενη Ζώνη επιστρέφοντας με την μορφή άλλης μίας προεκβολής, στο χείλος της ίδιας Ταινίας. Συχνά γίνεται ορατή στην ΝΕΒΖ.
  3. Column (Στήλη – [D] ):
    Σκοτεινή περιοχή σε μία Ζώνη με την μορφή στήλης. Μια Στήλη μπορεί να είναι κάθετη ή κάπως κεκλιμένη. Σε πρόσφατα χρόνια έχουν παρατηρηθεί κυρίως στην STrZ.
  4. Disturbance (διαταραχή – [D] ):
    Μια μεγάλη σκοτεινή η σκιώδης περιοχή λίγο ή πολύ καλά διακεκριμένη και συνήθως κατάστικτη από μικρότερες λεπτομέρειες οι οποίες μπορεί να καταλαμβάνουν ασυνήθιστα σχήματα. Πραγματικές διαταραχές, φαίνονται να περιορίζονται στην STrZ και την SEBΖ.
  5. Oval – (Οβάλ – [W] ):
    Μια λευκή μετρίου μεγέθους έως μεγάλη στρογγυλή ή ελλειπτικού σχήματος περιοχή η οποία είναι αρκετά λαμπρή και καλά διακεκριμένη. Πολύ κοινή στην ΕΖ.
  6. Nodule ( Κόμβος – [W] ):
    Μία μικρή, πολύ λαμπρή κηλίδα, συνήθως στρογγυλή και όχι πολύ μεγαλύτερη από τον δίσκο του Γανυμήδη, του μεγαλύτερου δορυφόρου του Δία. Συχνά ορατή στις SEB και ΝΕΒ.
  7. Notch ( Εγκοπή – [W] ):
    Mία μικρή ημικυκλική λευκή οδόντωση στο χείλος μιας Ταινίας, συνήθως κάπως λαμπρότερη από την προσκείμενη Ζώνη. Οι Εγκοπές βρίσκονται συχνά κατά μήκος του Βόρειου χείλους (North Edge) της ΝΕΒ (ΝΕΒn).
  8. Bay ( Κόλπος – [W] ):
    Μια μεγάλη, συνήθως λευκή, ημιοβάλ οδόντωση στο χείλος μιας Ταινίας. Το πιο διάσημο παράδειγμα είναι ο Κόλπος,(εσοχή), της Μεγάλης Κόκκινης Κηλίδας (RSH) στο Νότιο στέλεχος της SEB [SEB(S)].
  9. Rift (Ρήγμα – [W] ):
    Μια μακριά συνήθως λευκή, λαμπρή λωρίδα εκτεινόμενη λιγότερο ή περισσότερο οριζόντια κατά μήκος του εσωτερικού μιας Ταινίας. Μπορεί να εμφανιστεί στην SEB ή την ΝΕΒ όταν η Ταινία είναι πολύ σκοτεινή και εμφανής.
  10. Streak (Λωρίδα -[W] ):
    Μια πολύ επιμήκης λευκή κηλίδα. Όταν τοποθετείται μέσα σε μιά Ταινία, μιά λωρίδα μπορεί να είναι μέρος ενός Ρήγματος.


Για το πλήρες κείμενο της ονοματολογίας των σχηματισμών, καταγραφή τους (οπτικά) από ερασιτέχνες αστρονόμους και η μελέτη της δυναμικής της ατμόσφαιρας με την μέθοδο της χρονομέτρησης διαβάσεων, δείτε την συνολική εργασία: Στέλλας Ι. – Οδηγός Δία (1999)




Η παρατήρηση του πλανήτη Δία κατά την αντίθεση 2010/2011 και η επανασύσταση της Νότιας Ισημερινής Ταινίας ( S . E . B . Revival )

Κατά την διάρκεια του 7ου Πανελλήνιου Συνεδρίου Ερασιτεχνών Αστρονόμων (Χανιά, 7– 9 Οκτωβρίου 2011) παρουσιάστηκε η παρακάτω εργασία:

Η παρατήρηση του πλανήτη Δία κατά την αντίθεση 2010/2011και η επανασύσταση της Νότιας Ισημερινής Ταινίας (S.E.B. Revival)

Εμμανουήλ (Μάνος) Ι. Καρδάσης

Περίληψη
Στην παρούσα εργασία παρουσιάζεται συνοπτικά η επανασύσταση της Νότιας Ισημερινής Ταινίας (ΝΙΤ- South Equatorial Belt) του πλανήτη Δία καθώς και κάποια σημαντικά γεγονότα κατά την αντίθεση του πλανήτη το 2010/2011. Στις αρχές Νοεμβρίου 2010 μια λευκή κηλίδα σήμανε την έναρξη της επανασύστασης της ΝΙΤ. Κοντά στη θέση γέννησης της πρώτης κηλίδας ένας σημαντικός αριθμός νέων κηλίδων εμφανίστηκε σταδιακά. Αυτή η περιοχή αποτέλεσε το επίκεντρο μιας διαταραχής που ανέδειξε σκουρόχρωμο υλικό με μια σειρά πιδάκων (plumes). H περιοχή αυτή αποτέλεσε τον Κεντρικό Κλάδο Η διαταραχή εξαπλώθηκε με την βοήθεια των τοπικών ρευμάτων σε δύο ακόμα κλάδους, Βόρειο (ΝΙΤ(Β)) και Νότιο (ΝΙΤ(Ν)). Μέχρι το τέλος της αντίθεσης οι δύο κλάδοι είχαν εξαπλωθεί σε όλο το μήκος του πλανήτη ολοκληρώνοντας σχεδόν την επανασύσταση της ΝΙΤ. Η εργασία βασίζεται σε στοιχεία κυρίως από Έλληνες παρατηρητές στο οπτικό φάσμα και συμπληρώνεται όπου απαιτείται με στοιχεία από ξένους παρατηρητές. Το ευνοϊκό ύψος του πλανήτη από την Ελλάδα και η χρήση σύγχρονων οργάνων και τεχνικών οδήγησε στην δημιουργία εικόνων και χαρτών υψηλής ανάλυσης της ανώτερης ατμόσφαιρας του Δία που συνεπάγεται χρήσιμα παρατηρησιακά δεδομένα. Επίσης παρουσιάζονται βασικές πληροφορίες για την παρατήρηση του πλανήτη πέραν του οπτικού φάσματος καθώς και ιστορικά δεδομένα για την παρατήρηση του φαινομένου στο παρελθόν.

Πλήρες κείμενο: Καρδάσης 2011 – Αντίθεση του Δία 2010-2011 και η επανασύσταση της Νότιας Ισημερινής Ταινίας




Παρουσίαση και ανάλυση οπτικών παρατηρήσεων του πλανήτη Αφροδίτη κατά την διάρκεια της Ανατολικής αποχής 2002

” Fairest of stars, last in the train of night,
if better thou belong not to the dawn,
Sure pledge of day, that crown’st the smiling morn
With thy bright circlet, praise HIM in thy sphere. ”
Milton.

Η παρούσα αναφορά, αφορά την καταγραφή, συγκέντρωση και αξιολόγηση, ανάλυση 27 οπτικών τηλεσκοπικών παρατηρήσεων της ατμόσφαιρας της Αφροδίτης κατά την διάρκεια της Ανατολικής Αποχής του πλανήτη ( Ιανουάριος 14 – Οκτώβριος 31- 2002) με τον σκοπό της ανάγνωσης της συμπεριφοράς και δυναμικότητας των κυριότερων σχηματισμών και τέλος τον προσδιορισμό παρατηρησιακών σχεδίων προς εκπόνηση.

Α. Σημαντικές ημερομηνίες της Αφροδίτης.

1. Ανωτέρα Σύνοδος (Superior Conjunction): 14 Ιανουαρίου 2002.
2. Μέγιστη Ανατολική Αποχή (Greatest Elongation East): 22 Αυγούστου 2002. (460)
3. Κατωτέρα Σύνοδος (Inferior Conjunction): 31 Οκτωβρίου 2002.

Greek venus observers with their telescopes

Εικόνα 1. Οι παρατηρητές που συμμετείχαν στην οπτική μελέτη της ατμόσφαιρας.

B. Παρατηρητές και εξοπλισμός.

Παρατηρητής Περιοχή Τηλεσκόπιο Παρατηρήσεις
Μαραβέλιας Γρηγόρης Αθήνα 110mm f/7,3 Equatorial refl. 6
Στέλλας Ιάκωβος Αθήνα 130mm f/10,8 Equatorial, motor driven,Apo. Refractor 10
Στρίκης Ιάκωβος Αθήνα 60mm f/11,6 Altaz. Refractor 11
ΣΥΝΟΛΟ 27

1. Εισαγωγή.

Η Αφροδίτη στο τηλεσκόπιο εμφανίζει έναν υπέρλαμπρο δίσκο ως τεκμήριο της υπέρπυκνης ατμόσφαιρας της. Οι ορατοί σχηματισμοί, σκιάσεις (χαρακτηριστικά απορρόφησης) ή λαμπρότητες (ανάκλασης) αρχίζουν να γίνονται αντιληπτοί στο μέρος του φάσματος (ιώδες) όπου η ευαισθησία του ανθρώπινου ματιού πέφτει κατακόρυφα.
Οι σχηματισμοί έχουν την όψη άλλοτε άμορφων αμυδρών σκιάσεων, άλλοτε λωρίδων ενώ ο δίσκος μπορεί να εμφανίζεται και κενός. Παρατηρείται γενικά λαμπρό χείλος (limb band) και σταδιακή πτώση της έντασης προς την διαχωριστική γραμμή (terminator).Στις Πολικές περιοχές παρατηρούνται λαμπρές κηλίδες, (συστροφές νεφών) Cusp Caps – N/S οι οποίες ενίοτε περιβάλλονται από σκούρες λωρίδες / Cusp Collars – N/S.

Venus drawing sample features
Στην επόμενη Εικόνα 2 φαίνονται οι κυριότεροι σχηματισμοί.

Η χρήση φίλτρων Wratten της Kodak και αλληλοδιασταυρούμενες παρατηρήσεις θεωρούνται ύψιστης αναγκαιότητας.
Οι παρατηρητές σχεδίασαν τον πλανήτη σε φόρμες της BAA στο οπτικό μέρος του φάσματος με την χρήση φίλτρων.

2. Αποτελέσματα.

Έγινε ανάλυση των παρατηρήσεων και προσκόμισή τους στον Robert Steele (BAA’s Mercury and Venus Section) ο οποίος διασταύρωσε μεγάλο μέρος των καταγραφών.
Το 70% των σχηματισμών βρέθηκε να καταγράφεται στο Ν. Ημισφαίριο, με μέση μέγιστη έκταση στις -30deg και αντίστοιχη Βόρεια τις +10deg πλάτους του δίσκου.

venus cloud markings chart

Εικόνα 3. Διάγραμμα κατανομής των σχηματισμών της ανώτερης ατμόσφαιρας της Αφροδίτης ανά πλανητοκεντρικό πλάτος και ημερομηνία (24/5-26/9/02).

Η μελέτη της κατανομής των σχηματισμών της ατμόσφαιρας έγινε με φάση δίσκου (θεωρητικά προβλεπόμενη) από περίπου 84% έως περίπου 50% (20 Αυγούστου). Ως εκ τούτου δίνει μία συνοπτική εικόνα της κατανομής ανά πλανητοκεντρικό πλάτος του πρώτου μισού της αποχής και ειδικά από πλάτος -50deg έως +50 deg, προς αποφυγή συγχύσεων με σχηματισμούς και φαινόμενα των πολικών περιοχών. Η συνέχιση της μελέτης κρίθηκε ασύμφορη καθώς η συνεχώς μειούμενη φάση του δίσκου καθιστά τις καταγραφές της ατμόσφαιρας μειωμένης εμπιστοσύνης.
Καταρτίστηκαν δείκτες εμφάνισης (για Πολικές κηλίδες, λωρίδες) και σχετικής φωτομετρίας (για Πολικές κηλίδες) όπως και σχετικοί δείκτες εμφάνισης και σχετικής φωτομετρίας για επιλεγμένα ζεύγη ή ομάδες δεικτών. Τοποθετήθηκαν σε διαγράμματα και αποκάλυψαν την έμφαση της Ν. Πολικής κηλίδας σε δυναμικότητα εμφάνισης αντίθετα την έμφαση της Β. Πολικής κηλίδας σε δυναμικότητα σχετικής φωτομετρίας. Συνοψίστηκαν συμπεράσματα και προτάθηκαν παρατηρησιακά σχέδια.

3. Εικόνες στο υπεριώδες μέρος του φάσματος και οπτικές καταγραφές.

Από την εποχή του Ross και των πρώτων φωτογραφιών στο ιώδες ο προβληματισμός σχετικά με την αξιοπιστία των οπτικών παρατηρήσεων συνεχίζεται. Σήμερα δεχόμαστε ότι θα πρέπει να υπάρχει ένα οπτικό ανάλογο των υπεριωδών σχηματισμών. Η ακριβής σχέση ψηφιακών εικόνων (ιώδες) – οπτικών παρατηρήσεων αποτελεί προτεινόμενο σχέδιο ύψιστης σημασίας δεδομένου του όγκου τριών αιώνων οπτικών καταγραφών.
Η αξιοπιστία των οπτικών καταγραφών της ατμόσφαιρας της Αφροδίτης προβλημάτισε τους παρατηρητές κάθε εποχής. Ας δούμε κάποιες ενδιαφέρουσες αναφορές από το παρελθόν.

Όπως τίθεται από τον Richard Baum:
“Η αλήθεια είναι ότι οι περισσότεροι από εμάς βλέπουν στην πραγματικότητα σχηματισμούς στον πλανήτη. Είναι αμυδροί και δύσκολα εμφανείς και καθώς είναι αμυδροί και αβέβαιοι υποβάλλουν την υποψία. Εν τούτοις ένα πράγμα για το οποίο όλοι θεωρούμαστε ένοχοι είναι η αποτυχία να διερευνήσουμε τον δίσκο για μοτίβο.”

Ο Audouin Dolfus, επιφανής πλανητολόγος, με τον οποίο είχε συνεργαστεί και ο Ιωάννης Φωκάς, αναφέρει το 1961:
” Η παρατήρηση των σκιωδών περιοχών της Αφροδίτης δεν εξαρτάται από την τηλεσκοπική ανάλυση με την ίδια κρισιμότητα των σχετικά μεγάλου κοντράστ λεπτομερειών στις επιφάνειες των πλανητών ή της Σελήνης. Αντίθετα οι συνθήκες που αφορούν το τηλεσκόπιο και η κατάσταση της ατμόσφαιρας είναι επιθυμητό να έχουν σαν αποτέλεσμα το μέγιστο κοντράστ.”

Το 1891 ο William Denning, από τους επιφανέστερους ερασιτέχνες αστρονόμους του 19ου αιώνα έγραφε:
“Ενίοτε εκδίδονται αναφορές οι οποίες παρουσιάζουν πολύ σκοτεινούς και ευδιάκριτους σχηματισμούς οι οποίοι έχουν γίνει ορατοί με τηλεσκόπια μόλις 2 ή 3 ιντσών. Τέτοιες επικλήσεις είναι συνήθως αναξιόπιστες. Εάν μπορούσαν οι συγγραφείς τέτοιων αναφορών να εποπτεύσουν τον πλανήτη μέσα από ένα καλό τηλεσκόπιο διαμέτρου 10 ή 12 ιντσών θα έβλεπαν αμέσως ότι είχαν απατηθεί. Μερικά χρόνια πριν, έκανα έναν αριθμό παρατηρήσεων της Αφροδίτης με διοπτρικά τηλεσκόπια διαμέτρου 2-3 και 4 ιντσών και 4 και 10 ιντσών κατοπτρικά και μπόρεσα άμεσα να εντοπίσω με τα μικρότερα όργανα αυτό που μετά βεβαιότητας φαινόταν να είναι κηλίδες μίας έκδηλης φύσης αλλά στην συνέχεια χρησιμοποιώντας το 10 ιντσών κατοπτρικό, στο οποίο η εικόνα βελτιώθηκε δραματικά, οι κηλίδες εξαφανίστηκαν εντελώς και απλά παρέμεινε σαν κάτι μόλις περισσότερο από μία υποψία των αμυδρών συμπυκνώσεων οι οποίες συνιστούν τους μόνους ορατούς σχηματισμούς στην επιφάνεια.”

Ο Denning κατέθεσε την αλήθεια όπως τότε αυτή παρουσιάζονταν σ’ αυτόν. Δεν είχε καμία γνώση της συσχέτισης των σχηματισμών στο υπεριώδες μέρος του φάσματος και των οπτικών καταγραφών.

Η διαφορά είναι ότι οι σύγχρονοι παρατηρητές έχουν αυτό το πλεονέκτημα και σαν συνέπεια κοιτούν με “πληροφορημένο” μάτι. Όπως και να ‘χει οι επικρίσεις τους επηρεάζονται ακόμη από το παρελθόν. Αυτή η αποτυχία στο να “εκσυγχρονιστεί” κάποιος σίγουρα πρέπει να εμποδίζει την κατανόηση και όχι να την προωθεί.

Ο Richard Baum αναφερόμενος στις τυπικές τοποθετήσεις διαφόρων ομάδων παρατηρητών αναφέρει:
“Αν και πολλοί κοιτούν την Αφροδίτη, λίγοι πραγματικά παρατηρούν και ακόμη λιγότεροι συμφωνούν για τι είναι ορατό. Άλλοι με μία υπερκριτική προκατάληψη αποκλείουν ο,τιδήποτε δεν μπορούν να διασταυρώσουν ενώ άλλοι υιοθετούν μία πιο ελεύθερη στάση. Τίποτε δεν είναι σίγουρο, λίγα κατοχυρώνονται, εν τούτοις μία απόλυτη απόρριψη όλων των στοιχείων τα οποία δεν συμμορφώνονται προς τις προσμονές μας σίγουρα έρχεται σε σύγκρουση με την πραγματικότητα.”

Οι εικόνες βέβαια του Mariner 10, στο υπεριώδες μας αποκάλυψαν την πραγματική φύση των “υπεριωδών” σχηματισμών των νεφών της Αφροδίτης σε όλη τους την μεγαλοπρέπεια.

Από πειράματα τα οποία έχουν γίνει ανάμεσα σε διαφορετικούς παρατηρητές βάσει συγκριτικών οπτικών παρατηρήσεων, έχει διαφανεί ότι η καταγραφή των υπεριωδών σχηματισμών της ατμόσφαιρας εκτός των θετικών ή αρνητικών προσμονών /προκαταλήψεων (ψυχοφυσιολογικά φαινόμενα) πρέπει να επηρεάζεται τουλάχιστον σε κάποιο βαθμό από την ευαισθησία του συγκεκριμένου παρατηρητή στο υπεριώδες φάσμα. Αυτή η ευαισθησία είναι εκτός των άλλων η οποία σε κάποιο βαθμό επηρεάζει τον τρόπο με τον οποίο δύο διαφορετικοί παρατηρητές καταγράφουν τους ίδιους σχηματισμούς.
Υπάρχουν πάρα πολλά παραδείγματα από την ιστορία που δείχνουν το ενδιαφέρον πολλών σημαντικών αστρονόμων για την σχέση που συνδέει τους σχηματισμούς οι οποίοι καταγράφονται οπτικά και τις αντίστοιχες εικόνες στο υπεριώδες. Η αντιστοιχία αυτή είχε κινήσει το ενδιαφέρον του μεγάλου F.E.Ross ο οποίος το1927 υπήρξε πρωτοπόρος στην εκτενή μελέτη σχηματισμών της ατμόσφαιρας του πλανήτη φωτογραφίζοντας την ατμόσφαιρα στο υπεριώδες. “Είναι φυσικό”,έγραφε, “να συμπεράνουμε ότι οι σχηματισμοί οι οποίοι παρατηρούνται οπτικά σχετίζονται στενά, σε θέση και γενική μορφή” με αυτούς που φαίνονται σε φωτογραφίες οι οποίες έγιναν στο U.V με τα διαμέτρου 60 και 100 ιντσών κατοπτρικά τηλεσκόπια του όρους Wilson τον Ιούνιο και Ιούλιο του 1927.

Το ζήτημα όμως ακόμη δεν έχει απαντηθεί ικανοποιητικά. Το 1960 ο Bradford Smith συνεργάτης αστρονόμος τότε στο πολιτειακό αστεροσκοπείο του New Mexico συνέκρινε μερικές παρατηρήσεις του Richard Baum οι οποίες είχαν γίνει στο ολικό φως με ένα διοπτρικό τηλεσκόπιο διαμέτρου 115mm με τις εικόνες του στο UV.
“Η πίστη μου στις οπτικές παρατηρήσεις”, έγραφε, “ενδυναμώθηκε κατά πολύ…όταν συνέκρινα τα σχέδια σας με αυτά του καθ. Freitas Mourao, και στην συνέχεια συνέκρινα αμφότερα με τις εικόνες μου στο υπεριώδες. Ένα πανομοιότυπο χονδρικά μοτίβο ανάμεσα στα τρία είναι άμεσα εμφανές, και λίγες αμφιβολίες μπορούν να υπάρξουν για το ότι εσείς και o καθ. Mourao παρατηρείτε τους ίδιους σχηματισμούς που εμείς φωτογραφίζουμε.”
Η σχετικά πρόσφατη είσοδος στο προσκήνιο του ψηφιακού εξοπλισμού, CCD κάμερες και βιντεοσκόπηση, έχει δώσει την ευκαιρία σε κάποιους ερασιτέχνες αστρονόμους να κάνουν ένα γιγαντιαίο άλμα στην δυνατότητα καταγραφής σχηματισμών στις πλανητικές επιφάνειες. Αυτήν την στιγμή συγκεκριμένα την ατμόσφαιρα της Αφροδίτης με ψηφιακές μεθόδους στο υπεριώδες καταγράφουν λίγοι ερασιτέχνες. Αναφέρω τους David Moore με 36cm f/13,5 Cassegrain, HX-5 με IRB και Schuler UV filter και Frank Mellilo ο οποίος χρησιμοποιεί ένα 8″ SCT με ένα UG1 UV φίλτρο.

Στην συνέχεια παραθέτω κάποιες από τις παρατηρήσεις του συγκεκριμένου κύκλου μαζί με κάποιες ψηφιακές εικόνες CCD σε ίδιες ή παραπλήσιες ημερομηνίες. Γενικά η ερευνά μου στο δίκτυο έδειξε ότι ελάχιστες ψηφιακές εικόνες δεν είχαν κάποια έστω σχέση με τους καταγραφόμενους σχηματισμούς στις οπτικές παρατηρήσεις οι οποίες παρουσιάστηκαν στην αρχή.
Παραθέτω τις εικόνες χωρίς ιδιαίτερα σχόλια καθώς η συγκριτική μελέτη ψηφιακών εικόνων στο υπεριώδες και οπτικών παρατηρήσεων είναι ένα πεδίο μελέτης το οποίο απαιτεί πειράματα αυστηρής μεθοδολογικής βάσης.

Comparison of Venus Features from optical observations and UV ccd images

Comparison of Venus Features from optical observations and UV ccd images Comparison of Venus Features from optical observations and UV ccd images Comparison of Venus Features from optical observations and UV ccd images

Εικόνα 4. Σχέδια και εικόνες της Αφροδίτης στο υπεριώδες και στο οπτικό
κατά την διάρκεια της Ανατολικής αποχής του 2002.

Το παραπάνω κείμενο αποτελεί μια σύνοψη των αποτελεσμάτων. Μπορείτε να βρείτε την πλήρη εργασία (μαζί με την μεθοδολογία και πιο αναλυτική παρουσίαση της ανάλυσης) στο ακόλουθο αρχείο: Στέλλας 2003 – Οπτικές παρατηρήσεις του πλανήτη Αφροδίτη. Ανατολική αποχή 2002.




Παρατηρώντας τον πλανήτη Άρη το 2003

Εισαγωγή:

Εφέτος ο Άρης θα βρίσκεται σε αντίθεση στις 28 Αυγούστου σε απόκλιση -15deg 49′. Ο πλανήτης θα ανέβει λίγο περισσότερο από 36deg επάνω από τον Ελληνικό ορίζοντα. Αρκετά καλύτερα από την εμφάνισή του 2001 αλλά ακόμη αρκετά χαμηλά ώστε το είδωλο να εμφανίζει χρώμα λόγω διασποράς στην γήινη ατμόσφαιρα κάτι που διορθώνεται με την χρήση φίλτρων Wratten 15, 25, 29 κίτρινο, κόκκινο αντίστοιχα. Παράλληλα, αυξάνεται το κοντράστ στα σκούρα σημάδια του δίσκου τα οποία συνιστούν τους επιφανειακούς σχηματισμούς του πλανήτη.

Ο Άρης θα βρίσκεται ιδιαίτερα κοντά στην Γη το 2003 καθώς η αντίθεση συμβαίνει με τον πλανήτη σχεδόν ακριβώς στο περιήλιο. Η διάμετρος του δίσκου του πλανήτη την στιγμή της μέγιστης προσέγγισης (ουσιαστικά μία ημέρα πριν από την αντίθεση όταν ο Άρης βρίσκεται σε απόσταση 0,37272 AU) θα είναι 25,11 arcsec. Ουσιαστικά η αντίθεση του 2003 είναι η εγγύτερη για πολλούς αιώνες (η εγγύτερη από την ανακάλυψη του τηλεσκοπίου) επίσης η εγγύτερη για πολλούς ακόμη αιώνες.

Ο πλανήτης γενικά είναι παρατηρήσιμος οπτικά όταν ο δίσκος είναι μεγαλύτερος από 6 arcsec (Φεβρουάριος) , αλλά ψηφιακές εικόνες CCD μπορούν να γίνουν και σε δίσκο διαμέτρου 4 arcsec δεδομένης της σταθερότητας της ατμόσφαιρας. Έτσι μπορεί να παρατηρηθεί περίπου το 75% ενός Αρειανού έτους.

Χάρτης του Άρη από τον τον Mario Frassati.
Εικόνα 1: Χάρτης των επιφανειακών σχηματισμών του Άρη από τον τον Mario Frassati.

Επιφανειακοί σχηματισμοί προς μελέτη:

Στην αντίθεση του 2003 το Νότιο ημισφαίριο του πλανήτη είναι ευνοϊκότερα τοποθετημένο από το Βόρειο. Μετά την μεγάλη θύελλα σκόνης του 2001 η περιοχή Solis Lacus (90deg W, -30deg S) έγινε μικρότερη, άλλαξε κάπως σχήμα και εμφανίστηκε ένας νέος σκοτεινός σχηματισμός στα Δυτικά -Phasis-(100deg W, -30deg S) ο οποίος επανεμφανίζεται στην περιοχή σε ανάλογες περιπτώσεις.
(Παρατήρησα για πρώτη φορά αυτόν τον νέο σχηματισμό στις 20/7/2001 με την περιοχή της Solis Lacus αφανή, βλέπε Εικόνα 2.)

Σχέδια του πλανήτη Άρη (2001) από τον Ιάκωβο Στέλλα
Εικόνα 2: Α. 12/6/2001, 102mm f/15 Refr, X300, Ls = 177deg. CML = 126deg. Παρατηρούμε την Solis Lacus στο προπορευόμενο χείλος. Β. 22/7/2001, 130mm f/10,8 Refr, X 280, Ls = 200deg. CML = 120deg. Κατά την διάρκεια της θύελλας, η Solis Lacus είναι αφανής, ο σχηματισμός Phasis έχει εμφανιστεί.

Άλλες ελάσσονες αλλαγές έλαβαν χώρα και η Syrtis Major (290deg W, +20deg N έως -10deg S) εμφανίστηκε στενότερη μετά την καταιγίδα. Ιστορικά η περιοχή αυτή μεταβάλλεται σε πλάτος κάτι που οφείλεται σε σκόνη η οποία κάποιες φορές εναποτίθεται στην Ανατολική της πλευρά, αν και από την δεκαετία του 1980 μέχρι και το 2001 υπήρξε εντυπωσιακά σταθερή σε εμφάνιση.

Θύελλες σκόνης:

Το 2001, λίγες εβδομάδες μετά από την αντίθεση και μόλις μετά την Εαρινή Ισημερία του Βορείου ημισφαιρίου του Άρη, η μελέτη των επιφανειακών σχηματισμών διεκόπη για αρκετούς μήνες από μία μεγάλη θύελλα σκόνης. Αυτό το συμβάν το μεγαλύτερο για δύο δεκαετίες ξεκίνησε από την λεκάνη της Hellas (290deg W, -45deg S) και διογκώθηκε από σκόνη η οποία σηκώθηκε στην άλλη πλευρά του πλανήτη. Το 2003 η Άνοιξη του Νότιου ημισφαιρίου (Ls = 180deg)*

*Ls = 0deg — Εαρινή ισημερία Β. ημισφαιρίου του Άρη.
Ls = 90deg — Θερινό ηλιοστάσιο Β. ημισφαιρίου.
Ls = 180deg – Εαρινή ισημερία Ν. ημισφαιρίου.
Ls = 270deg – Θερινό ηλιοστάσιο Ν. ημισφαιρίου
Ls: Αρεοκεντρικό μήκος του Ήλιου.

αρχίζει στις 5 Μαίου έτσι δεν πρέπει να περιμένουμε μέχρι την ημερομηνία της αντίθεσης για να παρατηρήσουμε τον πλανήτη. Το Αρειανό κλίμα μεταβάλλεται σε χρονική κλίμακα δεκαετιών. Αν και τα γεγονότα του 2001 προτείνουν ότι ο πλανήτης επιστρέφει σε μία εποχή Νότιας Άνοιξης / θέρους με περισσότερη σκόνη, εν τούτοις τέτοια φαινόμενα είναι αδύνατον να προβλεφθούν. Κάλλιστα θα μπορούσε το 2003 να είναι έτος με λιγότερη σκόνη στην ατμόσφαιρα του Άρη. Τα ιστορικά δεδομένα προτείνουν ότι θα υπάρχει σκόνη. Στο προσοφθάλμιο ερευνούμε για νέφη τα οποία εμφανίζονται λαμπρά στο κόκκινο (W23A, W25, W29) ή το θάμπωμα / απόκρυψη κάποιου γνώριμου σχηματισμού κάτω από καλές συνθήκες.

Οι περιοχές :
Hellas-Noachis και Thaumasia-Claritas-Daedalia υπήρξαν υπεύθυνες στο παρελθόν για τις περισσότερες και τις μεγαλύτερες ιστορικές θύελλες.

Πολικές περιοχές και νέφη:

Η αντίθεση του 2003 θα είναι μία καλή εποχή για την παρατήρηση της εποχιακής τήξης της Νότιας Πολικής επικάλυψης. Η Ν.Π.Ε αρχίζει να τήκεται στην αρχή της άνοιξης, η τήξη φτάνει στο μέγιστο και επιβραδύνεται έτσι που μέχρι την αρχή του θέρους απομένει μόνον ένα μικρό σχεδόν στατικό απομεινάρι. Καθώς η Π.Ε τήκεται μπορεί να γίνουν ορατά σκοτεινά ρήγματα μέσα στην περιοχή της και αποκομμένα τμήματα της όπως τα διάσημα ‘Όρη του Mitchell‘ και το Novus Monts μπορεί να εμφανιστούν. Δείτε την μορφή των φαινομένων που περιγράφονται σε τρία σχέδια του Richard Mc Kim από την προηγούμενη αντίθεση του 1988.

Σχέδια του πλανήτη Άρη (1988) από τον Richard McKim
Εικόνα 3: Α. 360mm O.G X450, 1988 August 17, CML = 261deg, Ls = 254deg. Νότια Πολική επικάλυψη εμφανής με την περιοχή Novus Monts αποκομμένη. Β. 360mm O.G X450, 1988 August 27, CML = 110deg, Ls = 260deg. H Solis Lacus είναι η μεγάλη οβάλ κηλίδα η οποία περιβάλλεται από την φωτεινότερου τόνου έρημο της Thaumasia. Ο σχηματισμός Phasis είναι αμυδρά ορατός, επόμενος (Δυτικά) της Solis Lacus. Η ασύμμετρη Ν.Π.Ε εμφανίζει ένα ρήγμα. C. 830mm O.G X 400, 1988 October 26, CML = 350deg, Ls = 297deg. Γίνεται ορατή η πολύ μικρή Ν.Π.Ε

Παρατηρησιακές επισημάνσεις:

Εάν κάνετε σχέδια χρησιμοποιήστε έναν δίσκο διαμέτρου 50mm, χρησιμοποιώντας την φόρμα παρατήρησης της BAA (Εικ. 4). Χρησιμοποιήστε μολύβια σκληρότητας Β και 2Β για τους γραμμικούς σχηματισμούς και 4Β και 6Β για τις εκτεταμένες σκιάσεις διαφόρων τόνων. Οι παρατηρητές οι οποίοι θα κάνουν CCD εικόνες θα πρέπει να καταγράφουν κάθε σχηματισμό σε περισσότερες από μία εικόνες και δεν θα πρέπει να συγχέουν artifacts ή περιστασιακά σημάδια τα οποία εμφανίζονται άπαξ με τους πραγματικούς σχηματισμούς.

Φόρμα παρατήρησης του πλανήτη Άρη
Εικόνα 4: Η φόρμα παρατήρησης του Άρη (από την ΒΑΑ).

Η αντίθεση του 2003 θα είναι μοναδική και ποτέ στην διάρκεια της ζωής μας δεν θα έχουμε άλλοτε την ευκαιρία να δούμε τον Άρη σε τέτοιο μέγεθος. Η Άνοιξη στο Νότιο ημισφαίριό του αρχίζει στις 5/5/2003 και τα γεγονότα αναμένονται συναρπαστικά.

Εύχομαι άπειρες συγκινήσεις.




Μεθοδολογία Οπτικής Παρατήρησης του Άρη

Η οπτική παρατήρηση των πλανητών ανάγεται σε μία τέχνη, για την οποία δεν απαιτείται απλά τεχνική και εξοπλισμός.

Στις αρχικές προσπάθειες τους πολλοί περιστασιακοί “παρατηρητές” του πλανήτη άλλοτε αναφέρουν ότι δεν βλέπουν τίποτε παρά μόνον έναν ωχρό-κόκκινο δίσκο χωρίς κανένα απολύτως χαρακτηριστικό. Άλλοτε ότι κάποιες φορές βλέπουν σκούρα σημάδια αλλά πολύ δύσκολα και αναρωτιούνται εάν πράγματι αξίζει τον κόπο να προσπαθήσουν τόσο πολύ με πενιχρά αποτελέσματα δεδομένων του διαστημικού τηλεσκοπίου Hubble και των διαστημοσυσκευών τα οποία όπως πιστεύουν δεν αφήνουν κανένα περιθώριο ουσιαστικής μελέτης για έναν παρατηρητή με ένα μικρό τηλεσκόπιο. Αυτή η άποψη είναι εντελώς εσφαλμένη καθώς το μεν τηλεσκόπιο Hubble έχει πολύ λίγες ευκαιρίες να απεικονίσει τον πλανήτη, σε αξεπέραστη βέβαια ευκρίνεια, οι δε διαστημοσυσκευές όπως το Mars Global Surveyor (MGS) αποτελούν επιστημονικά όργανα εξαιρετικής ειδίκευσης. Τα ιστορικά αρχεία γενικής συμπεριφοράς από την εποχή που κατεγράφη ο πρώτος, εκ των υστέρων, αναγνωρίσιμος σχηματισμός (Huygens- Syrtis Major- 1666) έχουν κυρίως διατηρηθεί από ερασιτέχνες αστρονόμους οι οποίοι χρησιμοποίησαν σε πολλές περιπτώσεις μικρά τηλεσκόπια της τάξεως των 10-20εκ.

Διοπτρικά τηλεσκόπια της τάξεως των 10εκ το ελάχιστο, δίνουν μία καλή εικόνα του πλανήτη και ο γράφων στην αντίθέση του 1995 έχει συνεισφέρει στις στατιστικές νεφών της British Astronomical Association, παρατηρώντας με ένα κατοπτρικό τηλεσκόπιο TAL 1- Mizar διαμέτρου 11εκ! Βέβαια είναι αλήθεια ότι αυτή η κατάσταση ήταν αποτέλεσμα συστηματικής προσπάθειας και μελέτης. Μπορεί όμως να γίνει. Ο γράφων θα πρότεινε ως το ιδανικό τηλεσκόπιο ένα Νευτώνειο μεγάλου σχετικά εστιακού λόγου (f/6-f8) και διαμέτρου 25-40εκ.

Η οπτική παρατήρηση των πλανητών είναι μία τέχνη η οποία δεν κατακτάται αυτόματα. Ο παρατηρητής πρέπει στην αρχή, σε μεγεθύνσεις οι οποίες καθορίζονται κυρίως από την σταθερότητα της ατμόσφαιρας (250-450Χ) για τηλεσκόπια 10-40εκ, να πάρει τον χρόνο του ώστε να συνηθίσει το μάτι την φωτεινότητα του δίσκου. Αρχικά, όπως είπαμε, ο επίδοξος μελετητής του πλανήτη δεν ξεχωρίζει παρά στην καλύτερη περίπτωση τις λαμπρές πολικές επικαλύψεις (Π.Ε)-(Polar Caps) ως λαμπρές λευκές κηλίδες στους πόλους του πλανήτη και σκούρα σημάδια τα οποία, προσοχή, δεν ταυτίζονται με τοπογραφικούς σχηματισμούς στην επιφάνεια του Άρη παρά μόνον σε ελάχιστες περιπτώσεις. Τα σημάδια αυτά αποτελούν περιοχές διαφορετικής τονικότητας ανάλογα με το πως αντανακλούν το ηλιακό φως. Μετά από συστηματική, όχι περιστασιακή, μελέτη του πλανήτη η ικανότητα αντίληψης οξύνεται με αποτέλεσμα ο παρατηρητής να βιώνει μία αποκάλυψη μετά από κάποιο χρονικό διάστημα διακρίνοντας λεπτομέρειες που αρχικά ήταν “αφανείς”. Η οδήγηση (αστροστάτης) βοηθάει πάρα πολύ καθώς η παρατήρηση γίνεται σε μεγάλες μεγεθύνσεις και ως εκ τούτου ο δίσκος παραμένει ελάχιστα δευτερόλεπτα στο πεδίο. Ο παρατηρητής αναμένει τις χρονικές στιγμές όπου οι περιδινήσεις της ατμόσφαιρας σιγάζουν και το είδωλο σταθεροποιείται για να αποκομίσει την πληροφορία. Χωρίς οδήγηση αφήνουμε τον δίσκο σε διάβαση στο πεδίο και προσπαθούμε να αποκομίσουμε την πληροφορία όταν ο δίσκος βρίσκεται στο κέντρο.

Στον Άρη, εκτός των επιφανειακών σχηματισμών διακρίνονται λαμπρότητες οι οποίες ανάγονται σε ατμοσφαιρικά φαινόμενα. Τέτοια φαινόμενα αποτελούν οι Πολικές νεφώσεις (Polar Hoods), κυρίως εμφανείς κατά την διάρκεια του τοπικού φθινοπώρου/ χειμώνα, οι πάχνες των χειλών- (limb hazes) ως λαμπροί μηνίσκοι οι οποίοι καλύπτουν τα χείλη, ομίχλες (fogs), διάφοροι τύποι διακριτών νεφών (discrete clouds) δηλ. Ορεογραφικά νέφη, γύρω από τις περιοχές πανάρχαιων ηφαιστείων στις περιοχές ( Elysium-{220deg W, 30deg N} και Tharsis- {120deg W, 20deg N}) και τοπικά ή εποχιακά νέφη σε άλλες περιοχές (Libya- {270deg W, 0deg N}, Syrtis Major- {290deg W, 10deg N}).

Όπως έχει ήδη αναφερθεί, ένα πολύ σημαντικό και την ίδια στιγμή συγκλονιστικό ατμοσφαιρικό φαινόμενο του Άρη αποτελούν οι θύελλες σκόνης οι οποίες εγείρονται ενίοτε στην επιφάνεια του πλανήτη και καλύπτουν τεράστιες περιοχές κάποιες φορές μάλιστα και ολόκληρο τον πλανήτη. Τα νέφη σκόνης γίνονται αναγνωρίσιμα από τους παρατηρητές του Άρη καθώς θαμπώνουν ή αποκρύπτουν κάποιους σχηματισμούς. Φυσικά απαιτείται η πρότερη εμπειρία της γενικής θέσης και έντασης των επιφανειακών χαρακτηριστικών ώστε η απόκρυψη λόγω της σκόνης να γίνει αναγνώσιμη.
Γενικά τα νέφη σκόνης είναι λαμπρά στο κόκκινο φως. (W23A, W25, W29).

Η διάκριση και καταγραφή όλων αυτών των επιφανειακών και ατμοσφαιρικών φαινομένων αποτελεί την πεμπτουσία της μελέτης του πλανήτη από τους ερασιτέχνες αστρονόμους.
Για την σωστή διάκριση, καταγραφή και στην συνέχεια ανάλυση των δεδομένων για την εξαγωγή συμπερασμάτων ως προς την γενική συμπεριφορά του πλανήτη στην διάρκεια μίας αντίθεσης, απαιτείται η χρήση φίλτρων γνωστών προδιαγραφών. Χρησιμοποιούνται τα φίλτρα της σειράς Wratten της Eastman Kodak τα οποία είτε είναι γυάλινα και βιδώνονται στο προσοφθάλμιο, είτε είναι υπό μορφή ζελατίνας (διατίθενται σε φωτογραφικά καταστήματα) και προσαρμόζονται στο προσοφθάλμιο.

Τα φίλτρα που ανέφερα χρησιμοποιούνται επιλεκτικά για την ενδυνάμωση των διάφορων χαρακτηριστικών και ατμοσφαιρικών φαινομένων με βάσει την εξής γενικότητα: Καθώς προχωράμε από το κόκκινο μέρος του φάσματος προς το μπλε-ιώδες ενδυναμώνουμε σταδιακά από τους επιφανειακούς σχηματισμούς προς τα φαινόμενα της κατώτερης και στην συνέχεια της ανώτερης ατμόσφαιρας. Η επιλεκτική ενδυνάμωση δεν γίνεται αντιληπτή αμέσως απαιτείται και εδώ συστηματική προσπάθεια. Πιο συγκεκριμένα έχουμε τα εξής:

Κόκκινο:

Α) W23A, ανοιχτό κόκκινο. Για τηλεσκόπια μικρότερα των 20εκ, ιδανικό για την καλύτερη διάκριση των επιφανειακών χαρακτηριστικών, όπως και των Πολικών πάγων καθώς διαπερνά τις πολικές πάχνες εάν υπάρχουν.
Β) W25, W29, κόκκινο. Για τηλεσκόπια μεγαλύτερα των 20εκ, καθώς είναι ιδιαίτερα πυκνά. Χρησιμοποιούνται με τον ίδιο τρόπο με το ανοιχτό κόκκινο, επίσης νέφη τα οποία φαίνονται λαμπρότερα με τα 25 ή 29 είναι σχεδόν σίγουρο ότι αφορούν σκόνη αν και απαιτούνται και άλλες προϋποθέσεις γι’ αυτό.

Πράσινο:

Α) W55, W58. Ενδυναμώνουν επιφανειακούς παγετούς, ομίχλες και διακριτά νέφη χαμηλού υψομέτρου.

Μπλε:

Α) W80A. Ανοιχτό μπλε. Για τηλεσκόπια μικρότερα από περίπου 20εκ, ενδυναμώνει τις πάχνες των χειλών, τις Πολικές νεφώσεις και γενικά νέφη υψηλού υψομέτρου.
Β) W38A. Μπλε. Πυκνό φίλτρο το οποίο θεωρείται ιδανικό για την καταγραφή της ανώτερης ατμόσφαιρας του πλανήτη, για χρήση τηλεσκοπίων άνω των 20εκ.

Ιώδες:

Α) W47. Ιώδες. Φίλτρο εξαιρετικής πυκνότητας ως εκ τούτου χρήσιμο μόνο σε μεγάλα τηλεσκόπια της τάξεως των 20-25εκ το ελάχιστο. Καταγράφει αποκλειστικά την ανώτερη ατμόσφαιρα.

Η πιο πάνω παρουσίαση αφορά μία βασική σειρά φίλτρων με την βοήθεια της οποίας ο παρατηρητής μπορεί να καταγράψει χρήσιμα στοιχεία για τις επιφανειακές και ατμοσφαιρικές αλλαγές του πλανήτη.

Μετά την εξοικείωση με τα φυσικά στοιχεία του πλανήτη, για τον οπτικό παρατηρητή έρχεται η στιγμή του σχεδιάσματος του. Ο εξοπλισμός αφορά μία όχι πολύ έντονη φωτεινή πηγή, προτιμάται κόκκινο φως με ροοστάτη για ελεγχόμενη ένταση, δύο μολύβια διαφορετικής σκληρότητας (Faber- B, 4B) και μία γόμα. Το Β επιτρέπει την καταγραφή γραμμικών σχημάτων ενώ το 4Β την καταγραφή διαφορετικών τόνων. Η εμπειρία του γράφοντος έχει δείξει ότι κρίνεται χρησιμότατο να σχεδιάζεται εκ των προτέρων στον πρώτο κύκλο (Α) της φόρμας παρατήρησης της British Astronomical Association – BAA (Εικ. 1) ο άξονας περιστροφής του πλανήτη) όπως και η σωστή τοποθέτηση της σκιάς της φάσης του Άρη. Αυτή η προετοιμασία προσφέρει, στους παρατηρητές με ισημερινή στήριξη, μία πολύ καλή αναλογία της “επιφάνειας εργασίας” σε σχέση με την εικόνα του δίσκου στο προσοφθάλμιο. Αφού ο παρατηρητής έχει εξοικειωθεί με το είδωλο στο προσοφθάλμιο παίρνει κάποιο χρόνο γι’ αυτό, καταγράφει γραμμικά αρχικά την φάση, εάν δεν είναι προσχεδιασμένη, και τις λαμπρότητες των Πολικών περιοχών. (Μολύβι Β). Καλό είναι να ξεκινάει η παρατήρηση στο κόκκινο φως καθώς έχουμε αμέσως εν πρώτοις μία σαφή εικόνα των Πολικών πάγων. Στην συνέχεια καταγράφουμε, εάν κρίνουμε ότι αυτό βοηθάει, τα επιφανειακά χαρακτηριστικά αρχικά γραμμικά, και στην συνέχεια τοποθετούμε τις διαφορετικές τονικότητες με την βοήθεια του μολυβιού 4Β.

Φόρμα παρατήρησης του Άρη
Εικόνα 1: Η φόρμα παρατήρησης του Άρη (από την ΒΑΑ).

Έχοντας καταγράψει τους Πολικούς πάγους και τα επιφανειακά χαρακτηριστικά, στην συνέχεια ασχολούμαστε με την καταγραφή (σχετική φωτομετρία) των λαμπροτήτων του δίσκου. Εξετάζουμε τις λαμπρότητες στο πράσινο και μπλε φως αναφέροντας σε ποίο χρώμα εμφανίζουν την μέγιστη λαμπρότητα. Αυτές οι λαμπρότητες (νέφη, πάχνες, ομίχλες) σχεδιάζονται με διακεκομμένες γραμμές.

Πιθανά νέφη σκόνης σχεδιάζονται με εναλλασσόμενες παύλες και τελείες. Η όλη διαδικασία δεν πρέπει να διαρκέσει περισσότερο από περίπου 30′. Στην διάρκεια μίας νύχτας παρατήρησης μπορούν να γίνουν διαδοχικά σχέδια απέχοντας χρονικά μεταξύ τους όχι λιγότερο από μισή ώρα. Για ένα δεύτερο σχέδιο μπορεί να χρησιμοποιηθεί ο δίσκος Β. Επίσης μπορούν να γίνουν εκτιμήσεις έντασης βάσει μίας κλίμακας από το 0 έως το 10. Με 0 χαρακτηρίζονται τα λαμπρότερα σημεία του πλανήτη (Πολικοί πάγοι) ενώ οι σχετικά λαμπρές ωχροκόκκινες περιοχές (Έρημοι) συνήθως βαθμολογούνται με 3-4 και τα σκούρα χαρακτηριστικά από 6 έως 8. Αυτή βέβαια είναι μία γενική ιδέα. Οι εκτιμήσεις έντασης καταγράφονται στον κύκλο C της φόρμας, αφού πρώτα έχουμε σχεδιάσει γραμμικά τα περιγράμματα των σχηματισμών του σχεδίου Α ή Β. Οι περιοχές διαφορετικής τιμής έντασης οριοθετούνται από διακεκομμένες και εντός των ορίων τους γράφονται οι αριθμοί.
Στο κάτω μέρος της φόρμας αναφέρεται το όνομα και η τοποθεσία του παρατηρητή στο πλαίσιο (Observer και Locality αντίστοιχα).

Κάτω από την επιγραφή Observing notes – Παρατηρησιακές σημειώσεις αναφέρουμε κάτω από το γράμμα που αντιστοιχεί σε κάθε σχέδιο Α ή Β σχόλια τα οποία μπορεί να φανούν χρήσιμα σε αυτόν που αναλύει τις παρατηρήσεις για την διευκρίνηση συγκεκριμένων καταγραφών. Πχ ένα νέφος που φαίνεται να προβάλλεται εκτός του χείλους του πλανήτη, η τάδε λαμπρότητα πιο έντονη στο μπλε ή το πράσινο, η τάδε περιοχή εμφανής με αυτόν τον τρόπο κλπ.

Βάσει αυτής της μεθοδολογίας ο κοινός οπτικός παρατηρητής του πλανήτη με ένα σχετικά μικρό τηλεσκόπιο της τάξεως των 10-20εκ ακόμη περισσότερο με ένα 25-40εκ, πρέπει να έχει την βεβαιότητα ότι εκτός του ότι θα συναντήσει τα θαύματα του κόκκινου πλανήτη στην εγγύτερη παρουσίαση του πλανήτη στην ανθρώπινη ιστορία, θα έχει συνεισφέρει ουσιαστικά στην μελέτη του προσφέροντας χρήσιμα επιστημονικά στοιχεία.




Φυσικά στοιχεία του Άρη για το 2003

Πίνακας 1:
Φυσικά στοιχεία του Πλανήτη Άρη, 1 Μαίου – 27 Δεκεμβρίου 2003.
2003 Dec
deg min
Diam.
arcsec
P
deg
Q
deg
Φάση Αρεογραφικό Πλάτος
κέντρου του δίσκου (deg) (Tilt)
Ls
deg
Μάιος 01 -20 22 9,4 6 256 0,866 -16 177
11 -19 12 10,2 2 254 0,865 -18 183
21 -17 57 11,2 359 253 0,866 -19 189
31 -16 43 12,2 355 252 0,869 -20 194
Ιούν. 10 -15 32 13,5 352 251 0,875 -21 200
20 -14 29 14,9 349 251 0,885 -21 206
30 -13 40 16,4 347 251 0,887 -21 212
Ιούλ. 10 -13 10 18,2 345 252 0,914 -21 219
20 -13 03 20 344 253 0,934 -21 225
30 -13 21 21,9 343 256 0,956 -20 231
Αύγ. 09 -14 02 23,5 344 262 0,977 -19 237
19 -14 57 24,7 345 277 0,993 -19 244
29 -15 50 25 346 341 0,998 -19 250
Σεπτ. 08 -16 23 24,4 348 42 0,992 -19 256
18 -16 26 23 349 56 0,977 -19 263
28 -15 55 21,2 350 62 0,952 -20 269
Οκτ. 08 -14 55 19,2 349 65 0,934 -21 275
18 -13 30 17,3 348 66 0,915 -22 282
28 -11 46 15,5 346 67 0,899 -23 288
Νοέμ. 07 -09 47 14 344 67 0,887 -24 294
17 -07 45 12,6 342 67 0,879 -25 300
27 -05 14 11,4 339 67 0,873 -26 306
Δεκ. 07 -02 46 10,4 336 67 0,87 -26 312
17 -00 12 9,5 333 67 0,87 -26 317
27 +02 23 8,7 330 67 0,871 -26 323

 

Πίνακας 2:
Η μεταβολή της τιμής του Αρεογραφικού μήκους της θέσης του
κεντρικού μεσημβρινού του Άρη σε ώρες και πρώτα λεπτά.

Ώρες μοίρες Ώρες μοίρες λεπτά μοίρες λεπτά μοίρες λεπτά μοίρες
1 14,6 6 87,7 10 2,4 1 0,2 6 1,5
2 29,2 7 102,3 20 4,9 2 0,5 7 1,7
3 43,9 8 117 30 7,3 3 0,7 8 1,9
4 58,5 9 131,6 40 9,7 4 1 9 2,2
5 73,1 10 146,2 50 12,2 5 1,2 10 2,4

 

Πίνακας 3:
Η τιμή του Αρεογραφικού μήκους της θέσης του κεντρικού μεσημβρινού του Άρη,
στις 00h 00m U.T από 1 Μαίου έως 31 Δεκεμβρίου 2003.
Ημέρα Μάιος Ιούν. Ιούλ. Αύγ. Σεπτ. Οκτ. Νοέμ. Δεκ.
1 3,5 64 137,5 210,1 294 25 95,2 166,3
2 353,6 54,4 128,1 201 285,1 15,9 85,7 156,5
3 344,1 44,8 118,7 192 276,3 6,7 76,1 146,8
4 334,5 35,2 109,2 183 267,5 357,5 66,6 137,1
5 324,8 25,6 99,8 173,9 258,6 348,3 57 127,4
6 315,1 16 90,4 164,9 249,8 339,1 47,5 117,6
7 305,4 6,4 81 155,9 240,9 329,9 37,9 107,9
8 295,8 356,8 71,6 146,9 232 320,6 28,3 98,1
9 286,1 347,2 62,3 138 223,2 311,4 18,7 88,4
10 276,4 337,6 52,9 129 214,3 302,1 9,2 78,6
11 266,8 328 43,6 120,1 205,4 292,8 359,6 68,9
12 257,1 318,4 34,2 111,1 196,5 283,5 350 59,1
13 247,4 308,8 24,9 102,2 187,6 274,2 340,3 49,4
14 237,7 299,2 15,6 93,3 178,6 264,9 330,7 39,6
15 228,1 289,7 6,3 84,4 169,7 255,6 321,1 29,8
16 218,4 280,1 357 75,5 160,8 246,2 311,5 20,1
17 208,8 270,6 347,7 66,6 151,8 236,9 301,8 10,3
18 199,1 261 338,4 57,7 142,8 227,5 292,2 0,5
19 189,4 251,5 329,2 48,9 133,9 218,1 282,5 350,8
20 179,8 241,9 319,9 40 124,9 208,7 272,9 341
21 170,1 232,4 310,7 31,1 115,9 199,3 263,2 331,2
22 160,5 222,9 301,5 22,3 106,8 189,9 253,5 321,4
23 150,8 213,4 292,3 13,5 97,8 180,5 243,9 311,6
24 141,2 203,9 283,1 4,6 88,8 171 234,2 301,8
25 131,5 194,4 273,9 355,8 79,7 161,6 224,5 292,1
26 121,9 184,9 264,8 346,9 70,6 152,1 214,8 282,3
27 112,2 175,4 255,6 338,1 61,5 142,7 205,1 272,5
28 102,6 165,9 246,5 329,3 52,4 133,2 195,4 262,7
29 92,9 156,4 237,4 320,5 43,3 123,7 185,7 252,9
30 83,3 147 228,3 311,6 34,2 114,2 176 243,1
31 73,7 ——— 219,2 302,8 ——— 104,7 ——– 233,3

Η παράθεση των στοιχείων τα οποία αναφέρονται στους τρεις Πίνακες που προηγήθηκαν, σαφώς και είναι προσβάσιμα πια με το πάτημα ενός κουμπιού μέσα από κάποιο ανάλογο πρόγραμμα. Ακολούθησα την προ ψηφιακής εποχής τακτική όχι από αδυναμία να συμπορεύσω με τις νέες τάσεις μετάδοσης της πληροφορίας αλλά γιατί η συνολική και μόνον θέαση των φυσικών στοιχείων του πλανήτη δίνει την ευκαιρία για σημαντικές επισημάνσεις.

1) Το πρώτο ενδιαφέρον σημείο στο οποίο θα έπρεπε να σταθούμε είναι το ότι δεν θα έπρεπε ειδικά ο νεοεισερχόμενος οπτικός παρατηρητής του πλανήτη Άρη να υπολογίζει εκ των προτέρων την θέση του Κεντρικού Μεσημβρινού και να συμβουλεύεται τον χάρτη (Εικ. 1) για το τι περίπου αναμένει να δει στο προσοφθάλμιο. Κατ’ αυτόν τον τρόπο αποκτά μία εκ των προτέρων προκατάληψη με αποτέλεσμα χωρίς να το αντιλαμβάνεται μειώνει την “αντικειμενικότητα” της καταγραφής. Η λέξη αντικειμενικότητα είναι σε εισαγωγικά καθώς εξ’ ορισμού η οπτική παρατήρηση εμπεριέχοντας τον συνδυασμό οφθαλμός-ανθρώπινος εγκέφαλος είναι υποκειμενική. Βέβαια ένας έμπειρος οπτικός παρατηρητής κάλλιστα καταγράφει στοιχεία τα οποία τηρουμένων των αναλογιών θεωρούνται αντικειμενικά. Αυτό δεν σημαίνει ότι η ιστορία της οπτικής παρατήρησης του πλανήτη δεν έχει αναδείξει θέματα, όπως οι δήθεν διώρυγες ύδρευσης των Ερήμων του πλανήτη κατασκευασμένες από νοήμονα όντα του Άρη, τα οποία τελικά ήταν τα αποτελέσματα της υποκειμενικότητας του δέκτη, οφθαλμός- ανθρώπινος εγκέφαλος. Οι απαντήσεις σε τέτοιου είδους θέματα είναι προφανείς σήμερα όμως, πριν από 130 χρόνια χρειάστηκαν άλλα 50 χρόνια διαμάχης και τιτάνιας προσπάθειας για να ξεκαθαρίσουν. Το συμπέρασμα είναι ότι ο παρατηρητής πρέπει να καταγράφει μόνον αυτό για το οποίο είναι σίγουρος και όχι αυτό το οποίο θα όφειλε να δει βασισμένος σε κάποιο χάρτη.

Χάρτης του Άρη από τον τον Mario Frassati.

Εικόνα 1: Χάρτης των επιφανειακών σχηματισμών του Άρη από τον τον Mario Frassati.

2) Ας έρθουμε στην συμπλήρωση της φόρμας παρατήρησης (Εικ. 2). Αρχικά ο παρατηρητής καλείται να καταγράψει την ημερομηνία σε UT, την ώρα, και άλλα στοιχεία τα οποία αφορούν τον τύπο του τηλεσκοπίου που χρησιμοποίησε όπως την μεγέθυνση και τα φίλτρα. Πρέπει να χρησιμοποιούνται φίλτρα Wratten της Kodak, είναι επίσης σημαντικό να αναφέρεται ο αριθμός του φίλτρου και
όχι απλά το χρώμα του, πχ W23A και όχι απλά ανοιχτό κόκκινο. Η χρονική στιγμή καταγράφεται σε UT όπως έχει ήδη ειπωθεί δηλ όσο ισχύει η θερινή ώρα, UT = Ώρα Ελλάδος- 3ώρες, ενώ με την χειμερινή, UT= Ώρα Ελλάδος – 2ώρες. Στην συνέχεια καταγράφονται πληροφορίες οι οποίες αφορούν τα φυσικά στοιχεία του δίσκου όπως το μέγεθος και άλλα στοιχεία τα οποία αφορούν την κλίση του άξονα περιστροφής και την φάση και τοποθέτηση της σκιάς του δίσκου. Πολλές φορές
όταν ο νεοεισερχόμενος επίδοξος μελετητής του πλανήτη έρχεται σε επαφή με τέτοιου είδους στοιχεία, λόγω της έλλειψης ανάλογων πληροφοριών, αποθαρρύνεται με αποτέλεσμα να αυτοκαταργείται. Δεν υπάρχει αυτό το περιθώριο αυτήν την φορά καθώς ο πλανήτης θα έχει μία τόσο ευνοϊκή αντίθεση, τουλάχιστον από άποψη φαινομένου μεγέθους, μετά από 54.450 χρόνια! Η επόμενη εικόνα, θα βοηθήσει πιστεύω στην κατανόηση αυτών των φυσικών στοιχείων.

Φόρμα παρατήρησης του Άρη

Εικόνα 2: Η φόρμα παρατήρησης του Άρη (από την ΒΑΑ).

Εικόνα περιστροφής και φάσης Άρη

Εικόνα 3: Ο άξονας περιστροφής του Άρη και η γωνία της φάσης.

Αρχικά, στην εικόνα, παρατηρούμε τον κατακόρυφο άξονα N.Er. ο οποίος προσδιορίζει τον άξονα περιστροφής της Γης και τον Γήινο Βορά, N.e. Ο Βοράς εδώ είναι κάτω για να συμβαδίζει με τον προσανατολισμό του τηλεσκοπικού ειδώλου, Νευτώνεια τηλεσκόπια και διοπτρικά χωρίς διαγώνιο ή πρίσμα.

Ο άξονας N.Mrs. ορίζει αντίστοιχα τον άξονα περιστροφής του Άρη και τον Βορά του, N.m. Η γωνία (N.Er. O. N.Mrs. ) ορίζει την γωνία της κλίσης του άξονα περιστροφής του Άρη η οποία φέρει το σύμβολο P. Η γωνία αυτή τοποθετείται σε φορά αντίθετη της φοράς των δεικτών του ωρολογίου από τον Γήινο Βορά N.e.

Το επόμενο στοιχείο το οποίο καλείται να καταγράψει ο παρατηρητής άφορά την γωνία της φάσης η οποία χαρακτηρίζεται από το Q. Όπως φαίνεται στην εικόνα, η γραμμοσκιασμένη περιοχή αποτελεί την σκιά του δίσκου του πλανήτη. Η τιμή Q αφορά την γωνία ( N.Er. O. q. ) η οποία τοποθετείται επίσης σε φορά αντίθετη της φοράς των δεικτών του ωρολογίου. Η Οq είναι κάθετη της q1q3 όπου q1, q3 είναι τα σημεία όπου η σκίαση συναντάει τα χείλη του δίσκου του Άρη. Η φάση του δίσκου (τηλεσκοπικό είδωλο) εμφανίζεται στο αριστερό μέρος του δίσκου πριν από την αντίθεση ενώ στο δεξί μέρος μετά την αντίθεση.

Εδώ προκύπτει το θέμα του προσανατολισμού του δίσκου όπως και αυτό της περιστροφής του. Χρησιμοποιούμε το τηλεσκοπικό είδωλο, δηλ. Βοράς κάτω Δύση δεξιά, προσοχή εδώ αναφερόμαστε στην Δύση του Άρη και όχι στην ουράνια Δύση. Ως εκ τούτου η περιστροφή του πλανήτη συμβαίνει από τα δεξιά προς τα αριστερά ή όπως ονομάζουμε τα αντίστοιχα χείλη του δίσκου (limbs) από το Επόμενο (Following) ή πρωινό χείλος (Δυτικό) προς το Προπορευόμενο (Preceding) ή απογευματινό χείλος (Ανατολικό), βλέπε τις σημάνσεις Pr. και F της εικόνας.

Άλλο στοιχείο το οποίο καλείται να καταγράψει ο παρατηρητής είναι το Αρεογραφικό πλάτος του κέντρου του δίσκου το οποίο αναφέρεται στην φόρμα ως (Latitude of disk center). Αυτός είναι ένας δείκτης ο οποίος μας δείχνει το ποίο ημισφαίριο (Βόρειο ή Νότιο) στρέφεται προς την Γη. Για να κατανοήσουμε την αξία αυτού του δείκτη ας αναφέρουμε το εξής παράδειγμα: Αν ανατρέξουμε στον χάρτη (Εικ. 1) θα δούμε ότι ο σχηματισμός Solis Lacus έχει συντεταγμένες (90deg W, -30deg S). Στις 6 Ιουλίου 2003 στις 00h 00m UT ο Κεντρικός μεσημβρινός του Άρη έχει τιμή CML= 90 deg 4′. Αυτό σημαίνει ότι ο σχηματισμός βρίσκεται στο μέσον του δίσκου. Βάσει του Πίνακα 1 τώρα, η τιμή του
(Lat. Of disk center) στις 6/7/2003 είναι -20deg. Αυτό σημαίνει ότι η περιοχή Solis Lacus θα βρίσκεται περίπου 10deg Νοτιότερα από τον φαινόμενο ισημερινό του Άρη. Διαφορετικά θα λέγαμε ότι εάν μπορούσαμε να βρεθούμε στις 6 Ιουλίου 2003 στις 00h 00UT στο κέντρο του σχηματισμού, εάν μπορούσαμε να αντέξουμε τις πολύ χαμηλές θερμοκρασίες της Αρειανής επιφάνειας και να διαπεράσουμε το διάχυτο ηλιακό φως θα ατενίζαμε τον πλανήτη Γη σε απόσταση μόλις 10deg από το τοπικό ζενίθ. Η τιμή του Lat. Of disk center είναι πολύ χρήσιμη διότι εκτός από το ποιο ημισφαίριο στρέφεται προς την Γη, μας δίνει μία επιπλέον εντύπωση για τον βαθμό της παραμόρφωσης που θα πρέπει να αναμένουμε στην όψη ενός σχηματισμού λόγω της κλίσης (Tilt) του δίσκου. Ο γράφων μπορεί να καταθέσει την δυσκολία που αντιμετώπισε στην μελέτη του συγκεκριμένου σχηματισμού
κατά την διάρκεια των Αφηλιακών αντιθέσεων όπου η τιμή της κλίσης του δίσκου είχε υψηλή θετική τιμή και ως εξ τούτου οι σχηματισμοί του Νοτίου ημισφαιρίου λόγω της παραμόρφωσης ήταν πολύ δύσκολο να μελετηθούν με ακρίβεια.

Ας υποθέσουμε τώρα ότι βάσει των στοιχείων των Πινάκων 2 και 3 θέλουμε να υπολογίσουμε την τιμή του Αρεογραφικού μήκους της θέσης του ΚΜ και έστω ότι η τοπική ώρα παρατήρησης είναι 18/5/2003 01.30′. Σε UT, δεδομένης της θερινής ώρας, η ώρα παρατήρησης είναι 22.30′ 17/5/2003. Στις 00h 00m στις 17/5/03 σύμφωνα με τον Πίνακα 3 η τιμή είναι 208,8. Η τιμή του Κεντρικού μεσημβρινού θα είναι σύμφωνα με τα στοιχεία του Πίνακα 2: Central Meridian Longitude = 208,8+ 146,2 Χ2+29,2+7,3= 537,7. Το αποτέλεσμα είναι >360deg γι’ αυτό αφαιρούμε 360 και καταλήγουμε στην τιμή 177,7 που είναι και η τελική τιμή.

Ένας άλλος όρος που απαιτείται να συμπληρώσει ο παρατηρητής στην φόρμα παρατήρησης είναι το Ls ή Αρεοκεντρικό μήκος του Ήλιου. Ένας παρατηρητής στον Άρη στην διάρκεια του τοπικού έτους βλέπει τον Ήλιο να διαγράφει μία τροχιά στον ουρανό. Αυτή είναι η εκλειπτική του Άρη. Το ακριβές σημείο της θέσης του Ήλιου σε σχέση με τον ουράνιο Ισημερινό του Άρη και ως εκ τούτου η εποχή του πλανήτη την στιγμή της παρατήρησης προσδιορίζεται από το Ls. Οι διαδοχές των εποχών ορίζονται ως εξής:

Ls = 0deg — Εαρινή ισημερία Β. ημισφαιρίου του Άρη.
Ls = 90deg — Θερινό ηλιοστάσιο Β. ημισφαιρίου.
Ls = 180deg – Εαρινή ισημερία Ν. ημισφαιρίου.
Ls = 270deg – Θερινό ηλιοστάσιο Ν. ημισφαιρίου.

(Η τιμή του Ls δίνεται από τον Πίνακα 1.)

Μία άλλη μέθοδος που εκφράζει τις εποχές είναι η χρήση της Αρειανής ημερομηνίας, Martian Date (M.D). Η μέθοδος αυτή αφορά ένα εντελώς αυθαίρετο σύστημα στο οποίο αντιστοιχούμε 12 μήνες , δηλαδή (365) ημέρες στο Αρειανό έτος. Δεν υπάρχει ουσιαστικά καμία σχέση ανάμεσα σ’ αυτές τις ημερομηνίες (Martian Dates) και μία περιστροφή του Άρη γύρω από τον άξονά του, αφού ο πλανήτης
περιστρέφεται 668,6 φορές κατά την διάρκεια μίας περιστροφής γύρω από τον Ήλιο. Έτσι λοιπόν υπάρχουν περίπου 1,8 αληθινές ημέρες του Άρη (sol), [ sol = 24h 37m 20sec]. Για κάθε μία από τις φανταστικές Αρειανές ημερομηνίες. Iσχύει ότι: Ls = n-85deg. , οπότε βάσει των τύπων του Πίνακα 4 με απλή αντικατάσταση του n: (Ηλιοκεντρικό μήκος του Άρη) ή του Ls από τις αστρονομικές εφημερίδες, βρίσκουμε την M.D για κάθε περίπτωση. Δίνει πράγματι στον αστρονόμο μία καλύτερη αίσθηση των εποχών του Άρη η M.D= Feb 2 (δηλαδή 2 Φεβρουαρίου) από απλά Ls = 312deg ή “μέσον του χειμώνα στο Βόρειο ημισφαίριο του Άρη”.

Πίνακας 4
Βόρεια Άνοιξη
n : (85deg—175deg),
Ls : (0deg— 90deg)
MD = Mar. 20,8+[(n-85)/90]x 92,8
Βόρειο Θέρος
n : (175deg—265deg),
Ls : (90deg— 180deg)
MD = Jun. 21,6 + [(n-175)/90]x 93,4
Βόρειο Φθινόπωρο
n : (265deg— 355deg),
Ls : (180deg—270deg)
MD = Sep. 23 + (n-265)
Βόρειος Χειμώνας
n : (355deg—85deg),
Ls : (270deg—0deg)
MD = Dec. 22 + [(n-355)/90]x 89,05

Για παράδειγμα ας υπολογίσουμε Αρειανή ημερομηνία (Martian Date, MD) για τις 00h 00m U.T στις X.Date 6/7/2003 όπου ο σχηματισμός Solis Lacus θα βρίσκεται στον Κεντρικό Μεσημβρινό όπως είδαμε προηγούμενα στην διευκρίνηση του Tilt.

Από τον Πίνακα 1 έχουμε ότι την Date1 = 30/6/2003 το Ls1= 212 ενώ την Date2 = 10/7/2003 το Ls2 = 219 αφού η τιμή του παρέχεται ανά 10 ημέρες. Το ζητούμενο XLs θα δίνεται λοιπόν από την σχέση:

XLs = Ls1 +{ [(X.Date-Date1,πλήθος ημερών)/ (Date2-Date1,πλήθος ημερών)] x (Ls2-Ls1) }

= 212 + { [(6) / (10)] x 7 = 212 + 4,2 = 216,2.

Άρα το XLs = 216,2.

Τώρα, Ls = n-85 άρα n = Ls + 85. Με Ls = 216,2 πηγαίνοντας στον Πίνακα 4, βλέπουμε ότι αναφερόμαστε στην 3η σειρά του Πίνακα, (Ls: 180 – 270) ή στο Βόρειο φθινόπωρο δηλ. την Νότια Άνοιξη. Χρησιμοποιώντας τον τύπο MD = Sep.23 + (n-265) και αφού Ls = n-85 και n = Ls + 85 έχουμε:

MD = Sep23 + [( Ls+85) – 265 ] = Sep23 + [(216,2 + 85) – 265 = Sep23 + 36,2 = Oct. 29,2.

Αυτό το αποτέλεσμα δίνει μία πολύ καλή εικόνα της MD σε έναν κάτοικο του Νοτίου ημισφαιρίου της Γης αφού γνωρίζει καλά τι σημαίνει 29 Οκτωβρίου. Στο Βόρειο ημισφαίριο όμως που οι εποχές είναι οι αντίθετες θα μας βοηθούσε να πούμε ότι αναφερόμαστε στο τέλος του δεύτερου μήνα της Άνοιξης δηλαδή κάπου 29 Απριλίου, κάτι που νομίζω μπορούμε να καταλάβουμε καλύτερα. Άλλωστε εάν υπολογίσουμε το MD με Ls = 216,2 + 180, για να κάνουμε αναγωγή σε μήνα της Άνοιξης, τότε οι υπολογισμοί θα γίνουν βάσει του τύπου της 1ης σειράς του Πίνακα 4 και το αποτέλεσμα θα είναι: MD = Apr.28,1.

Άλλο στοιχείο το οποίο καλείται ο παρατηρητής να συμπληρώσει στην φόρμα παρατήρησης είναι η κατάσταση της ατμόσφαιρας κατά την διάρκεια της τηλεσκοπικής μελέτης του πλανήτη. Η κλίμακα
που χρησιμοποιείται για αυτήν την περίπτωση είναι η κλίμακα Αντωνιάδη, η οποία καθιερώθηκε από τον Ευγένιο Αντωνιάδη. Η κλίμακα αυτή είναι 5 βαθμίδων και θεωρείται καταλληλότερη για την μελέτη εκτεταμένων αντικειμένων (πλανήτες) από την κλίμακα Pickering (0-10) η οποία δημιουργήθηκε με βάση μελέτες αστρικών δίσκων.

Η κλίμακα Αντωνιάδη:

Ι = Τέλεια κατάσταση ατμόσφαιρας χωρίς καμία
διαταραχή στο τηλεσκοπικό είδωλο.
ΙΙ = Πολύ καλή κατάσταση ατμόσφαιρας με ελάχιστες διαταραχές αλλά
με μεγάλα διαστήματα ηρεμίας.
ΙΙΙ = Μέτρια κατάσταση με διαταραχές αλλά και κάποια διαστήματα
ηρεμίας.
ΙV = Κακή κατάσταση ατμόσφαιρας με συνεχείς διαταραχές και ελάχιστα
διαστήματα σχετικής ηρεμίας.
V = Κάκιστη κατάσταση ατμόσφαιρας, τέτοια που μόλις επιτρέπει
ένα πρόχειρο σχέδιο.




Αφροδίτη, Ανατολική αποχή 2003-2004

Ανακαλύψτε τα μυστήρια της με ένα μικρό ερασιτεχνικό τηλεσκόπιο.

Σχέδιο της Αφροδίτης (2002) από τον Ιάκωβο Στέλλα
Εικόνα 1: Η Αφροδίτη στις 24/05/02 με το 130mm f/10,8 -X280

Η Αφροδίτη, αυτό το υπέροχο ουράνιο σώμα το οποίο κοσμεί με την παρουσία του τον απογευματινό ουρανό μέχρι τις 8 Ιουνίου 2004 βρίσκεται σε εξαίρετη θέση παρατήρησης. Κάτοχοι τηλεσκοπίων ακόμα και 60mm διοπτρικών ή 114mm κατοπτρικών, μπορούν να εντυπωσιαστούν διακρίνοντας την φάση του πλανήτη και ίσως ξεχωρίζοντας πότε-πότε και κάποια αμφίβολη λεπτομέρεια στον υπέρλαμπρο δίσκο του πλανήτη. Μεγαλύτερα τηλεσκόπια (75mm διοπτρικά , 152mm κατοπτρικά το ελάχιστο) μπορούν, με την σωστή τεχνική, να συμβάλλουν στην παγκόσμια μελέτη η οποία ερευνά τα μυστήρια αυτού του πανέμορφου ουράνιου σώματος.
Ο παρατηρητής μπορεί να απολάβει της ικανοποίησης ότι έχει μία μοναδική εικόνα της υπέρπυκνης ατμόσφαιράς της ,καθώς μόνον αυτή γίνεται ορατή μέσα από το τηλεσκόπιο.
Η Αφροδίτη, εάν εξαιρέσουμε την Σελήνη, είναι το εγγύτερο ουράνιο σώμα προς την Γη. Θα βρείτε λοιπόν την Αφροδίτη στον απογευματινό ουρανό να απέχει Ανατολικά του Ηλίου και καλό θα είναι να την βρείτε με γυμνό μάτι ή με κιάλια πριν δύσει ο Ήλιος ή το πολύ, λίγο μετά την δύση διότι σε σκοτεινό ουρανό η λαμπρότητά της θα σας δημιουργήσει φοβερά προβλήματα στην εικόνα του τηλεσκοπίου.

Προσοχή όμως σαρώνοντας τον ουρανό με τα κιάλια υπάρχει πάντοτε ο κίνδυνος να πέσετε επάνω στον Ήλιο και τότε κινδυνεύετε από μόνιμη οφθαλμολογική βλάβη!

Καλύτερα σταθείτε στην σκιά ενός κτιρίου (σαρώνοντας τον ουρανό με τα κιάλια) ή περιμένετε να δείτε πρώτα την Αφροδίτη με γυμνό μάτι. Όσο λοιπόν θα περνάει ο καιρός , η Αφροδίτη θα φαίνεται μεγαλύτερη στο τηλεσκόπιο καθώς μέχρι τις 8 Ιουνίου 2004 που περνάει ανάμεσα στον Ήλιο και την Γη πλησιάζει προς εμάς και λόγω της μεταβολής της σχετικής θέσης της ως προς τον Ήλιο και την Γη, η φάση της μειώνεται συνέχεια. Δείτε στην εικόνα 2 μία άποψη των φάσεων του δίσκου της και του αντίστοιχου φαινομένου μεγέθους που εμφανίζει.

Σχήμα του δίσκου και φάσης της Αφροδίτης
Εικόνα 2: Το μέγεθος του δίσκου της Αφροδίτης και η φάση της.

Ο πρώτος δίσκος από δεξιά , στην εικόνα 2, δείχνει τον πλανήτη σε φάση 100% (ολοφώτιστου δίσκου) έχοντας φαινόμενο μέγεθος 9″,5 arcsec (ή δεύτερα της μοίρας). Σ’ αυτήν την θέση βρισκόταν στις 18 Αυγούστου του 2003 ( Ανωτέρα σύνοδος – Superior Conjunction).
Ξεπροβάλλοντας μέσα από την εκτυφλωτική λαμπρότητα του Ηλίου σε αποχή μόλις 1deg στις 19 Αυγούστου ήταν πρακτικά αδύνατον να παρατηρηθεί.

Ο δεύτερος δίσκος (από δεξιά ) δείχνει την Αφροδίτη σε φάση 90% όπως είναι δηλαδή στις 27 Νοεμβρίου του 2003, με φαινόμενο μέγεθος 11″,3 (arcsec) απέχοντας 26deg από τον Ήλιο. Η εικόνα 1, δίνει μία άποψη της Αφροδίτης όπως έγινε ορατή από τον γράφοντα στις 24/5/02 με το 130mm f/10,8 διοπτρικό σε περίπου την ίδια φάση (85%) και σε περίπου ανάλογο μέγεθος (12″). Στην ίδια εικόνα παρατηρούμε επίσης πως εκτός από την φάση του πλανήτη και την λαμπρότητα του χείλους , δεν υπάρχουν άλλες λεπτομέρειες.
Είναι αλήθεια ότι πολλές φορές ακόμη και έμπειροι παρατηρητές κινδυνεύουν να καταγράψουν σχηματισμούς οι οποίοι δεν υπάρχουν. Αυτό οφείλεται στο ότι ο δίσκος είναι υπέρλαμπρος και οι σχηματισμοί όταν υπάρχουν, είναι πολλοί αμυδροί. Πρέπει να πηγαίνουμε στο τηλεσκόπιο με ανοιχτό μυαλό! Η ύπαρξη νεφών μικρής πυκνότητας στην ατμόσφαιρα της Γης δεν εμποδίζει την παρατήρηση το αντίθετο μάλιστα, τέτοια νέφη μειώνουν την υπερβολική λαμπρότητα του πλανήτη λειτουργώντας ως φίλτρο. Βοηθάει επίσης να βλέπετε την Αφροδίτη κάθε φορά περίπου με την ίδια λαμπρότητα του υπόβαθρου (ουρανού) και το ίδιο τηλεσκόπιο και μεγέθυνση. Μεγάλη βοήθεια στην αποκάλυψη των μοτίβων της ατμόσφαιρας αποτελεί η χρήση φίλτρων διαφόρων χρωμάτων τα οποία είτε βιδώνονται στο προσοφθάλμιο είτε παρέχονται σε ζελατίνα από καταστήματα φωτογραφικών. Προτείνεται η σειρά Wratten της Eastman Kodak και τα συγκεκριμένα που βοηθούν στην παρατήρηση της Αφροδίτης είναι: Wratten 15 κίτρινο, Wratten 58 πράσινο, Wratten 25Α κόκκινο, Wratten 38A βαθύ μπλε , Wratten 47 ιώδες. Η αλήθεια είναι ότι με την χρήση διαφορετικών φίλτρων γίνονται ορατά διαφορετικά στρώματα της ημιδιαφανούς ατμόσφαιρας. Ο παρατηρητής εν τούτοις μπορεί να χρησιμοποιήσει οποιονδήποτε συνδυασμό φίλτρων ο οποίος παρέχει το επίπεδο φωτεινότητας ειδώλου ικανού για την καταγραφή των αμυδρών σχηματισμών. Ο γράφων έχει χρησιμοποιήσει τον συνδυασμό: [W23A – ανοιχτό κόκκινο + W58 – πράσινο] με μεγάλη επιτυχία. Οποιοδήποτε τηλεσκόπιο μεγέθους ακόμη και 12-15 εκατοστών αρκεί για τον συγκεκριμένο συνδυασμό.

Τι μπορεί να ελπίζει να δει κάποιος και τι αξίζει να καταγράψει και με ποιο τρόπο;
Ας πάρουμε τα πράγματα από την αρχή. Δεν χρειάζονται πολύ μεγάλες μεγεθύνσεις Χ150-Χ250 αρκεί ακόμη και για τηλεσκόπια της τάξεως των 7,5-15 εκ. Χρησιμοποιείστε το W25Α βαθύ κόκκινο, το οποίο σκουραίνει τον φωτεινό ακόμα ουρανό και βοηθάει στο να έχετε καλύτερη ευκρίνεια ειδώλου. Η γενική εικόνα του δίσκου είναι συνήθως η εξής: Το χείλος εμφανίζεται λαμπρότερο από τον υπόλοιπο δίσκο (βλέπε εικόνα 1) και γενικά υπάρχει πτώση της έντασης προς την διαχωριστική γραμμή(δ.γ. – διαχωριστική γραμμή φωτεινού-σκοτεινού μέρους του δίσκου). Πολλές φορές στα σημεία που το χείλος συναντά την δ.γ. της φάσης (πολικές περιοχές ή απολήξεις του μηνίσκου όταν η φάση είναι μικρότερη από 50%) εμφανίζονται λαμπρές επικαλύψεις, ή αλλιώς, πολικές κηλίδες (Cusp Caps) και γύρω τους αμυδρές, σκοτεινές, πολικές λωρίδες οι (Cusp Cap Bands). Τότε, ο δίσκος έχει την μορφή της εικόνας 3.

Σχέδιο της Αφροδίτης (1988) από τον Gerald North
Εικόνα 3: 23 Απριλίου 1988, Τ=19:19UT, 0,9m Cass. Refl, X312, Gerald North.
Παρατηρείστε τις λαμπρές πολικές κηλίδες και τις λωρίδες που τις περιβάλλουν.

Ερευνείστε την ύπαρξη αυτών των σχηματισμών, από τα μέσα Δεκεμβρίου του 2003 έως περίπου και το πρώτο δεκαήμερο του Μαίου του 2004, καθώς η φάση του δίσκου μεταβάλλεται από 80% έως 20% και η αποχή του από τον Ήλιο δεν είναι ποτέ μικρότερη από περίπου 30deg.
Τα φίλτρα W25A – βαθύ κόκκινο, W15 – βαθύ κίτρινο, W38A – βαθύ μπλε, W47 – ιώδες, αποκαλύπτουν τα μοτίβα των νεφών της ατμόσφαιρας. Η πιο τυπική όψη είναι πολύ αμυδρές λωρίδες λίγο πιο σκοτεινές από τον γενικό τόνο του δίσκου και εμφανίζονται συνήθως σε κάθετη διάταξη, και όχι μόνον, προς την διαχωριστική γραμμή (δ.γ) που ορίζει την φάση. Ενίοτε έχουν την μορφή άμορφων, αμυδρών σκιάσεων ή λαμπρών περιοχών. Μία τέτοια όψη είχα το 1999, βλέπε εικόνα 4,όπως και σε αρκετές περιπτώσεις το 2002 (Ανατολική αποχή).

Σχέδιο της Αφροδίτης (1999) από τον Ιάκωβο Στέλλα
Εικόνα 4: 7 Απριλίου 1999, 102mm f/15, X 300.
Διακρίνονται αμυδρές λωρίδες.

Πολλές φορές η δ.γ δεν ακολουθεί την γεωμετρική (νόρμα) καμπύλη, και εμφανίζει ανωμαλίες , οδοντώσεις, κλπ. Η κατάσταση της δ.γ (terminator), ζώνη του λυκόφωτος, μέσα από διαφορετικά φίλτρα , δίνει μία εικόνα της ατμόσφαιρας και ως εκ’ τούτου αποτελεί ένα μεγάλο πεδίο μελέτης.
Χρειάζεται όμως προσοχή καθώς η αστάθεια της ατμόσφαιρας δημιουργεί εντυπώσεις ανωμαλιών της δ.γ ακόμα και όταν δεν υπάρχουν. Επίσης, σε κάποιες περιπτώσεις τα σημεία που η δ.γ συναντάει το χείλος-Cusps, εμφανίζονται “φαγωμένα” (blunted). Αυτό κυρίως συμβαίνει στην Νότια πολική περιοχή, στο επάνω δηλ μέρος του δίσκου όπως αυτός γίνεται ορατός σε ένα τηλεσκόπιο που αντιστρέφει το είδωλο. Παρατηρείστε προσεκτικά την εικόνα 1 και θα διακρίνετε ένα “φάγωμα” της Νότιας πολικής περιοχής (South Cusp).

Ακολουθώντας τις φάσεις της Αφροδίτης, κάνουμε την επόμενη στάση στον τρίτο δίσκο από δεξιά της εικόνας 2. Η φάση εδώ είναι 50% (διχοτόμηση) και βάσει της θεωρίας την αναμένουμε στις 31 Μαρτίου του 2004 όπου πλανήτης έχει μέγεθος περίπου 23″,9 και βρίσκεται (απέχει) 46deg. Ανατολικά του Ηλίου.
Έχει παρατηρηθεί (φαινόμενο Schroeter), στις Ανατολικές αποχές το ότι ο παρατηρητής καταγράφει την στιγμή της διχοτόμησης (φάση 50%) έως και ημέρες ενωρίτερα από το αναμενόμενο. Θα είναι πολύ ενδιαφέρον να κάνετε εκτιμήσεις της φάσης από τα τέλη Φεβρουαρίου του 2004 και μετά, για να διαπιστώσετε την εμφάνιση αυτού του συναρπαστικού φαινομένου το οποίο δεν έχει εξηγηθεί ακόμα ικανοποιητικά. Βέβαια οι τεχνικές της διεξοδικής μελέτης του φαινομένου είναι πολύπλοκες και η περαιτέρω ανάλυση είναι κάτι που ξεφεύγει από τους σκοπούς αυτού του άρθρου. Περισσότερες λεπτομέρειες που αφορούν την εν λόγω τεχνική μπορούν να γίνουν κατανοητές στην πιο διεξοδική παρουσίαση του οδηγού μελέτης της Αφροδίτης.

Προχωρώντας στους επόμενους δύο δίσκους της εικόνας 2 , τέταρτο και πέμπτο από δεξιά, βλέπουμε την Αφροδίτη σε φάση μηνίσκου, στον μεν τέταρτο δίσκο σε φάση 20% ( [20,8%]στις 10 Μαίου του 2004, μέγεθος 41″,7 και σε αποχή 35deg από τον Ήλιο) στον δε πέμπτο σε φάση περίπου 5% ( στις 6 Ιουνίου, μέγεθος 57″,1 και αποχή περίπου 5deg.).
Σ ’ αυτές τις περιπτώσεις, 10 Απριλίου, σε μέγεθος 26″,9 και αποχή 45deg έως 10 Μαίου με 41″,7 και 35deg. Αντίστοιχα, με το γενναιόδωρο μέγεθός της η Αφροδίτη σε μεγέθυνση ακόμη και Χ70 σε ένα τηλεσκόπιο 10- 15 εκ, σε σταθερή ατμόσφαιρα αποτελεί μία αξέχαστη εμπειρία σπάνιας αισθητικής απόλαυσης. Στην φάση του μηνίσκου, από ας πούμε τις 10 Απριλίου 2004 (44,4%) και στην συνέχεια, υπάρχει περίπτωση το ένα “κέρας” του μηνίσκου ή και τα δύο να επεκτείνονται πέραν της γεωμετρίας του μηνίσκου και αυτό οφείλεται στην διασπορά του Ηλιακού φωτός όταν αυτό συναντάει υπό γωνία την υπέρπυκνη ατμόσφαιρα της Αφροδίτης. Σ’ αυτές τις περιπτώσεις ο δίσκος έχει την όψη της εικόνας 5. Η αλήθεια είναι ότι αυτές οι επεκτάσεις μπορεί σε μικρότερη φάση να είναι πολύ πιο εκτεταμένες.

Σχέδιο της Αφροδίτης (1959) από τον Richard Baum
Εικόνα 5: Ιούνιος 1959, Richard Baum , 115mm O.G , X 186.
Βλέπουμε διάφορες όψεις της επέκτασης των απολήξεων του μηνίσκου.

Μετά από τις 20 Απριλίου του 2004 (μέγεθος 30″,7 – φάση 37,6% – αποχή 44deg.), έρχεται η στιγμή να παρατηρήσετε ίσως ένα από τα πιο συναρπαστικά, πιο δύσκολα και συνάμα αμφιλεγόμενα φαινόμενα που προσφέρει η παρατήρηση των πλανητών! Το φαινόμενο του τεφρώδους φωτός (Ashen Light) όπου η μη φωτισμένη περιοχή του δίσκου φαίνεται να φωτίζεται με ένα πάρα πολύ αμυδρό φως. Μία απλά και μόνον οπτική αναλογία προσφέρει η εικόνα της Σελήνης σε ανάλογη φάση (2-3 ημερών) όταν επίσης η μη φωτισμένη πλευρά της φωτίζεται αμυδρά από την αντανάκλαση του Ηλιακού φωτός στα σύννεφα της Γης (earth shine). Βέβαια δεν συμβαίνει αυτό στην Αφροδίτη από κάποια αντανάκλαση και ακόμη δεν υπάρχει ικανοποιητική εξήγηση. Η εικόνα που εμφανίζει ο δίσκος φαίνεται στην εικόνα 6, όπως μου παρουσιάστηκε τον Δεκέμβριο του 1997.

Σχέδιο της Αφροδίτης (1997) από τον Ιάκωβο Στέλλα
Εικόνα 6: 26/12/1997, 15.29 UT, 102mm f/15 O.G , X300.
Παρατηρείστε τον αμυδρό φωτισμό του μη φωτισμένου μέρους του δίσκου.

Η παρατήρηση του φαινομένου γίνεται σε σκοτεινό ουρανό, όταν η Αφροδίτη συνήθως βρίσκεται πολύ χαμηλά και ο υπέρλαμπρος μηνίσκος δημιουργεί ψευδαισθήσεις, γι’ αυτό ερευνείστε την πιθανή εμφάνιση του τεφρώδους φωτός (χρησιμοποιώντας φίλτρα W25, W38A) και είτε τοποθετώντας τον μηνίσκο μόλις έξω από το οπτικό πεδίο, είτε εφαρμόζοντας ένα διάφραγμα έκλειψης στο εστιακό σημείο του προσοφθάλμιου. Στις 8 Ιουνίου του 2004 η Αφροδίτη τέλος βρίσκεται ανάμεσα στον Ήλιο και την Γη (Κατωτέρα Σύνοδος) όπου χάνεται μέσα στο εκτυφλωτικό φως του Ήλιου, και εμφανίζεται στην συνέχεια μετά από κάποιες ημέρες στον πρωινό ουρανό ακολουθώντας τις φάσεις που αναφέραμε αντίστροφα και τότε η παρατήρησή της γίνεται πριν από την Ανατολή του Ηλίου.
Στην συγκεκριμένη μάλιστα περίπτωση υπάρχει διάβαση του δίσκου της Αφροδίτης μπροστά από τον δίσκο του Ηλίου, ένα σπάνιο και συναρπαστικό φαινόμενο για το οποίο θα υπάρξει αναλυτική αναφορά εγκαίρως.

Τέλος εάν θέλετε να κρατήσετε μία εντύπωση της παρατήρησής σας ή και να καταγράψετε τα φαινόμενα της ατμόσφαιρας, μπορείτε να σχεδιάσετε τους σχηματισμούς σε έναν δίσκο διαμέτρου 50mm , αναφέροντας την ημερομηνία , ώρα σε UT= Τοπική ώρα – 2 ώρες. Περιοχές διαφορετικής έντασης, πχ σκοτεινές λωρίδες, η λαμπρότητα του χείλους, ή οι πολικές κηλίδες καταγράφονται οριοθετώντας τις με διακεκομμένες γραμμές. Η εκτίμηση της έντασης αυτών των περιοχών γίνεται βάσει μίας κλίμακας από το 0-5 ως εξής:

0 = Λαμπρό λευκό. ( Λαμπρότητα χείλους ή πολύ λαμπρές κηλίδες)
1 = Ο γενικός τόνος του δίσκου.
2 = Πολύ αμυδρές σκιάσεις μετά βίας διακριτές.
3 = Σαφείς ωστόσο αμυδρές σκιάσεις.
4 = Κάπως πιο σκοτεινές σκιάσεις.
5 = Ακόμη πιο σκοτεινές σκιάσεις, πολύ σπάνιες.

Καταγράφετε την κατάσταση της ατμόσφαιρας από το Ι έως το V ως εξής:

Ι = Τέλεια ατμοσφαιρική κατάσταση χωρίς κανένα τρεμόπαιγμα.
ΙΙ = Μικρές αναταράξεις με στιγμές ηρεμίας οι οποίες διαρκούν αρκετά δευτερόλεπτα.
ΙΙΙ = Μέτρια κατάσταση της ατμοσφαιρικής κατάστασης με μεγάλες αναταράξεις.
IV = Κακή κατάσταση ατμόσφαιρας με συνεχείς προβληματικές αναταράξεις.
V = Πολύ κακή κατάσταση ατμόσφαιρας η οποία μόλις που επιτρέπει ένα πρόχειρο

Με την πρόσθετη αναφορά των φίλτρων που χρησιμοποιήθηκαν, την εκτίμηση της διαύγειας της ατμόσφαιρας την λαμπρότητα του υπόβαθρου του ουρανού και το μέγεθος , τον τύπο τηλεσκοπίου και την μεγέθυνση, έχετε καταγράψει τα εκπληκτικά φαινόμενα αυτού του πλανήτη. Επίσης πολύ σημαντικό είναι το ότι θα έχετε πειθαρχήσει σε μία διαδικασία καταγραφής και μ’ αυτόν τον τρόπο θα οξύνετε την αντιληπτική σας ικανότητα.
Επιπλέον συμβάλλετε στην παγκόσμια έρευνα.
Θα ήμουν ιδιαίτερα χαρούμενος να ακούσω τις δικές σας εμπειρίες από τα θαύματα αυτού του συναρπαστικού πλανήτη, τις απορίες σας και ίσως να λάβω μέσω του ηλεκτρονικού ταχυδρομείου τις καταγραφές σας.

Για περισσότερες λεπτομέρειες οι οποίες αφορούν τις τεχνικές οπτικής, φωτογραφικής παρατήρησης και καταγραφής ψηφιακής εικόνας (Video, CCD), μπορείτε να απευθυνθείτε στο: [jnstellas@hotmail.com] Είναι σίγουρο ότι ο επίμονος και συστηματικός παρατηρητής ανταμείβεται πλουσιοπάροχα, με έντονες συγκινήσεις και ανακαλύψεις κάτι το οποίο μπορώ να καταθέσω μετά από 12 χρόνια “θητείας” στο προσοφθάλμιο. Πρέπει όμως να έχουμε υπ’ όψιν μας πως ειδικά η παρατήρηση της Αφροδίτης, αλλά και γενικότερα η πλανητική παρατήρηση ανάγεται στο επίπεδο όχι μόνον μίας απαιτητικής τεχνικής αλλά εν κατακλείδι στο επίπεδο μίας τέχνης, όπως είχε αναφέρει ένας μεγάλος ερασιτέχνης αστρονόμος των πρώτων δεκαετιών του 20ου αιώνα.

“The observation of the planets is a delicate art.”
M. du Martheray.